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Chapter 1

Introduction

Machine learning is a modern and rapidly growing empirical science which integrates
themes in statistical inference and decision making with a focus on exploratory data anal-
ysis using computational methodology (Bishop (2006)). It is a branch of artificial intel-
ligence which draws strongly upon methodology from linear algebra, optimization, and
signal processing in order to develop and apply predictive models originating from statis-
tics, computer science, and engineering. The main concern of machine learning is to
design algorithms which enable machines to learn, particularly by finding patterns or reg-
ularities in data and using these patterns to drive some decision/analysis process (Bishop
(2006); Duda et al. (2001); Schölkopf and Smola (2002)).

1.1 Motivation

There has been a recent interest in neuroscience in assessing natural visual processing, by
measuring the activity in the brain that occurs during a natural visual processing task. This
is often approached via experiments in human functional magnetic resonance imaging
(fMRI), wherein the human volunteers are instructed to lie in an fMRI scanner as they
are shown some natural video stimulus (such as a movie clip) and the corresponding
brain activity is simultaneously recorded. The goal of these studies is the infer the active
regions of the brain during some aspect of the natural visual stimuli, such as during the
presentation of human faces.

These fMRI studies are plagued with a number of problems which are very well-adapted
for advanced machine learning methods. First, the data are very high-dimensional brain
images. As such, in order to infer which areas of the brain are active, one needs to em-
ploy a dimensionality reduction method to reduce the overall activity to localized regions
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2 CHAPTER 1. INTRODUCTION

in the brain. Second, fMRI analysis is inherently a data poor domain. There are relatively
very few corresponding time samples of the fMRI brain images with respect to the di-
mensionality of the data (e.g. limited time a human can remain safely in an fMRI scanner
and high demand on fMRI facilities). This renders the problem susceptible to overfitting,
which will be discussed below. Finally, given that the goal is to assess natural visual pro-
cessing via natural visual stimuli, one needs expensive manually-made labels indicating
the content of the stimuli. This is a very time-consuming and expensive process, requiring
approximately five human observers to label every few frames of a stimulus with the de-
gree to which a set of ’features’ are present (i.e. human faces, human bodies, etc.). These
labels are used to infer and localize the active brain regions occurring during the presen-
tation of these features and are crucially important in fMRI studies that seek to localize
stimulus-driven brain activity.

This thesis proposes a novel method in machine learning motivated by a new application
to a problem in neuroscience. To begin, we will discuss some basic machine learning
concepts.

1.2 Learning

Broadly speaking, learning is generally referred to as a method that incorporates infor-
mation from a sample of n-observations X = {x1, . . . , xn}, called the training data to
construct an algorithmic model of the generalities in the data (i.e., regularities and/or
structure), and then to infer some decision or prediction (i.e. classification). In statistics,
a similar process is referred to as estimation. The main goal in machine learning is to con-
struct a learning model with as few assumptions on the data as possible, on the training
data, which thus allows the model to make reasonable decisions/predictions about unseen
data, on testing data. The form of such an algorithm can be expressed as a function f(x),
where f takes the training data X as input, and produces an output f encoded in the same
way as X .

The nature of f(x) is generally determined by the learning phase or training phase, where
the regularities are quantified and the form of the decision/prediction is made based on
the training set X . Now the algorithm can be tested on new, unseen data, the testing data,
where we can observe how it performs in practice. The ability of f(x) to generalize its
inferential predictions to unseen data is called generalization – the trade-off between the
performance of f(x) on the training set versus its performance on testing sets (generaliz-
ability) is an important focus of research in machine learning (Vapnik, 1998).

The learning algorithm can be constructed in various frameworks, in which various de-
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grees of feedback are provided. First, the method can be in a supervised learning frame-
work, in which there is a set of target labels Y = {y1, . . . , yn} corresponding to each
{x1, . . . , xn} which indicates the target value of the ith sample of x. When Y consists
of discrete values, the problem is called classification, whereas when Y consists of con-
tinuous values, the problem is called regression. The process of obtaining a set of labels
Y is generally laborious and expensive. Second, the learning can be in a unsupervised
framework, where there is no set of labels to guide/supervise the learning phase, instead
the learning goal is to let the data itself define the structure (similarities or distribution)
discovered. Finally, the semi-supervised learning framework is a combination of the two
above approaches, allowing inclusion of data samples with and without labels (reducing
the need for as many of these expensive labels) for an increased data set that generally
leads to an improved predictive performance.

1.2.1 Overfitting and Regularization

As mentioned, the performance of a learning model on testing data, how well it general-
izes, needs to be balanced with the model performance on the training data. Performance
is evaluated by some quantified term, e.g. by a loss function quantifying the error rate,
and as such the goal is to learn e.g. a function f(x) with minimal testing error balanced
with minimal training error (thereby minimizing the loss function). When the model is
too catered to the testing data, the function f(x) is likely to be too complex to be able to
also yield good performance on the testing data. This situation known as overfitting.

Main contributions to overfitting are high-dimensionality of data with a relatively low
number of data samples. The reason behind this is that there are too many degrees of
freedom for the learning function f(x) to adapt to the data samples. Thus, when there are
relatively few data samples available with respect to the dimensionality of the data, f(x)

will be highly catered to the data samples, and correspondingly too complex to yield good
generalization performance.

To reduce overfitting, one has the option of regularization (Tikhonov and Arsenin (1977);
Tikhonov (1963)), which seeks to balance the trade-off between the testing error and train-
ing error. Regularization is particularly important in the case of high-dimensional data.
Regularization introduces parameters to the learning model that penalize complexity of
the learned function, which leads to the favoring of smooth functions in order to increase
generalizability of f(x). The basic idea behind this is that, when a learned model is per-
fectly catered to the given training data set, e.g. with training error equal to 0, then this
will be some complex function with a solution that is very unlikely to be generalizable to
a new data set, and thus will yield high testing error. See Figure 1.1 for an illustration of
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f(x) in the case of learning a simple 2-class classification function, and Figure 1.2 for a
possible corresponding plot of the types of learning error in this scenario.

(a) Complex 2-class classification function
versus a regularized, smooth classification
function.

Figure 1.1: This figure illustrates two classes of objects, the red and the blue, with two different
discriminant functions learned from the same model but with different degrees of regularization.
The green curve illustrates a function f(x) that is unregularized – it perfectly discriminates the
two classes, but the function is quite complex. The black curve represents a regularized function
which favors a smooth discriminant function – it accepts some amount of training error for the
sake of being more generalizable to unseen data (yielding a lower testing error). (Figures adapted
from Bishop (2006))

The regularization parameters of the learning model are selected through a process called
model selection (e.g. Bishop (2006)), which seeks the best parameters with minimal
overfitting and maximal generalizability. One way to do this is via cross validation, which
partitions the data set into training and testing sets, and trains the model on different
variations of these divisions. Other methods include data sampling and computational
heuristics (e.g. Hardoon et al. (2004)).

1.3 Outline

Canonical Correlation Analysis (CCA; see Chapter 2) is a supervised dimensionality re-
duction technique that can take advantage of data available in multiple modalities (multi-
ple forms). In the setting described above for instance, when data is available in the form
of fMRI recordings and the expensive man-made labels, CCA is a good method of choice
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(a) Training error versus testing error.

Figure 1.2: As an intuitive example, this figure illustrates the general trend of testing error versus
training error as a function of parameter M , which characterizes the complexity of the learned
discriminant function f(x). As the complexity of the learned function increases, the testing error
increases (overfitting) and the training error drastically decreases, whereas when the function is
relatively smooth (with some amount of regularization enforcing smoothness), then the trade-off
between the error types is balanced. In other words, overfitting is balanced with generalizability.
(Figures adapted from Bishop (2006)).

because it can utilize both modalities to drive the search for a lower-dimensional repre-
sentation of the fMRI data, as opposed to well-known methods such as Principle Compo-
nents Analysis (PCA) which can use only single-modality data. Furthermore, CCA has
been recently introduced (Blaschko et al. (2008)) in a semi-supervised learning frame-
work which uses an additional form of regularization in order to include the unlabeled
data in the learning problem. Prior to this thesis, this method has not been applied on
real data, and by utilizing CCA in a semi-supervised learning framework, we can make
maximum usage of all available fMRI data. In other words, even if we do not have labels
corresponding to all stimuli shown to the human volunteers, but rather we only have the
fMRI activity recorded during the unlabeled stimulus’ presentation, we can still include
this data in our semi-supervised dimensionality reduction framework. This method and
framework will thus allow us to reduce the necessity of these costly stimulus labels, and
at the same time increase our data samples under consideration and reduce overfitting.

We propose to approach the problem of stimulus-driven dimensionality reduction of fMRI
data with the novel method of semi-supervised kernelized CCA using Laplacian regular-
ization.

This thesis will begin with an introduction to supervised and unsupervised dimensional-
ity reduction methods, including the special cases of CCA, in Chapter 2. These linear
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methods will then be generalized to account for nonlinear patterns in data in Chapter 3.
Next, in Chapter 4 we will discuss the semi-supervised learning framework and how to
incorporate the method of CCA in this framework. In Chapter 5 we will become familiar
with the methods and types of fMRI data used in the experimental sets and formalize the
entire experimental setting. The two sets of novel learning experiments and their evalu-
ation methods will be described in detail with their corresponding results in Chapter 6.
Finally, in Chapter 7 we conclude the thesis with a discussion of these results.

This thesis assumes familiarity with linear algebra and basic probability theory. These
concepts and the corresponding notation used through the thesis can be found in the Ap-
pendix.



Chapter 2

Dimensionality Reduction

Most real world data, such as speech signals, digital photographs, and functional magnetic
resonance imaging data scans, are extremely high-dimensional: they consists of measure-
ments of the natural world which can be be represented as vectors consisting of thousands
of dimensions. High-dimensional data carry however many burdensome properties. First,
the data is particularly expensive in terms of storage; the size of which increases linearly
with each dimension. Second, it cannot be easily visualized; it is difficult to understand
what information high-dimensional contains. Also, due to the curse of dimensionality
(Bellman (1961)) – which states that the volume of the subspace increases exponentially
with the number of dimensions – the search of high-dimensional spaces is very compu-
tationally expensive. As such, manipulations and analyses of data lying in such a space
is cumbersome in terms of storage and computational costs. Thus for various reasons of
feasibility in dealing with data of such high-dimensions, reducing its dimensionality is
desirable.

Dimensionality reduction techniques can be employed to reach many goals in machine
learning. Depending on the main application, the dimensionality-reduced representation
can be utilized for compression/reconstruction, visualization, feature extraction and clas-
sification, as well as regression, the latter of which is most related to the problems to be
discussed in this thesis. As the name indicates, dimensionality reduction techniques seek
to find the lower dimensional representation that is somehow intrinsic to a given data set,
i.e. capturing its ”interesting structure”. The purpose is to find a lower-dimensional rep-
resentation which removes the ”less important” dimensions/bases, ones capturing infor-
mation deemed unimportant by the optimization criterion of the given method (i.e. when
the projection of 3-dimensional data onto 2-dimensions, captures some acceptable per-
centage of the variance in data). Corresponding to this representation, the transformation
function (projection) to this reduced basis set (subspace) is sought. See the illustration in

7



8 CHAPTER 2. DIMENSIONALITY REDUCTION

Figure 2.1: Dimensionality reduction methods manipulate the selection of U , which can be used
to project X to a lower-dimensional subspace. This entails selecting important basis functions
from U via a reduced set of coefficients in Q.

Figure 2.1.

Despite the typically high dimensionality of natural data, their intrinsic complexity and
local dimensions are generally much lower, given that constraints within the natural world
and through the imaging process of acquiring the images leads the data to occupy a lower-
dimensional subspace. Specifically, as mentioned, the goal is to learn the ’best’ geomet-
ric representation of a data set by finding a set of basis vectors of a more suitable sub-
space. The criterion for ’best’ is characterized differently for each dimensionality reduc-
tion method, and defined by a corresponding objective function which, upon optimization
will yield this criterion-defined lower-dimensional representation.

Now we will formalize the above setting of dimensionality reduction. Let V be an R-
vector space and U ⊆ V . U is called a subspace of V if and only if for all u1, u2 ∈ U
and for all λ1, λ2 ∈ R the following holds: λ1u1 + λ2u2 ∈ U . The goal is to identify
some U that is of fewer dimensions than V in which we can more efficiently represent and
handle the data set. Formally this is written X ≈ UQ, where X = (x1, . . . , xn) ∈ Rd×n,
then we look for u1, . . . , uk basis vectors (U ∈ Rd×k ) of the subspace U , and X̂ ∈ Rk×n

is the set of coefficients representing X . Notice that when k = d, this is only a change
of base and the approximation X ≈ UX̂ in Figure 2.1 becomes the equivalence X =

UX̂ . Furthermore, since U is the matrix of the basis vectors of U , and UTU = Ik×k, it
follows that X̂ = UTX . Different dimensionality reduction methods have a different task-
dependent criterion for the ’best’ selection of U , but the end goal is to have a smaller set of
’important’ coefficients X̂ using correspondingly fewer basis vectors U , i.e. to represent
the data in the lower-dimensional coordinate system of U (refer again to Figure 2.1).

In this chapter I will discuss a few different but related techniques often used for dimen-
sionality reduction, all of which may be mathematically expressed as a generalization of
Principle Components Analysis (PCA).



2.1. PRINCIPLE COMPONENTS ANALYSIS (PCA) 9

−2

−1

0

1

2

−0.500.5

−0.4

−0.2

0

0.2

0.4

0.6
P2

P1

P3

(a) Principle directions.
−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

P1

P2

(b) Projected data.

Figure 2.2: Example of dimensionality reduction using Principle Components Analysis (PCA). (a)
Directions within the data set capturing the maximum variance; three principle components of the
data found by PCA. (b) Projection of the data onto the first two principle components (reduction
to two dimensions).

2.1 Principle Components Analysis (PCA)

Principle Components Analysis (PCA) is a traditional approach to reducing the dimen-
sionality of a data set (Hotelling (1936)). It is an unsupervised method that finds the
lower-dimensional representation of the data (the basis vectors of the subspace) that pre-
serves most the data’s variance. For this, it uncovers the ’principle components’ of the
data set, the orthogonal directions that are aligned with the directions of maximal variance
of the data (Figure 2.2 (a)), and projects the data onto a select number of these components
(Figure 2.2 (b)). PCA is very useful as a compression method for a compact representa-
tion of a data set, as the number of directions that align with high variance is generally
much less than the original number of dimensions, and with which the data can be well
reconstructed.

To formalize PCA, consider the data set X = (x1, . . . , xn) ∈ Rd×n, for which we assume
the mean ( 1

n

∑n
i=1 xi = 0) has been subtracted from each sample xi. As a dimensionality

reduction method, PCA seeks a matrix U with which to project the data X such that
X̂ = UX , where X̂ is the X data projected via U . PCA requires that the projection
direction U is such that the projected data has maximal variance. From now on we will
denote all quantities with a hat that are the projections of the original data. In the case of
seeking only the first principle component ofX , we want to find the u1 where the variance
of X̂ is maximized (in X̂ = u1X), such that the norm of u1 is 1 (‖u1‖ = 1):
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max
u1

var(uX̂) = max
u1

n∑
i=1

x̂ix̂i (2.1)

= max
u1

n∑
i=1

(uiX)(uiX)T (2.2)

= max
ui

uTXXTu (2.3)

subject to the constraint:

‖u‖ = 1 (2.4)

Now instead of XXT above, we use the normalized covariance matrix of X:

CXX =
1

n
XXT . (2.5)

With which we can write the optimization problem by maximizing the following objective
function:

PCA objective function uTCXXu, (2.6)

subject to:

‖u‖ = 1 (2.7)

⇔ ‖u‖2 = 1 (2.8)

⇔ uTu = 1 (2.9)

⇔ uTu− 1 = 0 (2.10)

For optimization of Expression (2.6) we can use Lagrangian formalism (e.g. Burges
(2004)), which leads to the following Lagrangian function:

L(x, λ) = uTCXXu− λ(uTu− 1), (2.11)

where λ ∈ R is a Lagrange multiplier used to enforce the constraint. The minimization
of L is:
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∂L

∂u
(u, λ) = 0 (2.12)

⇔ 2CXXu− 2λu = 0 (2.13)

⇔ CXXu = λu, (2.14)

where the last expression in (2.14) is the eigenvalue problem to be solved. The maximiza-
tion of the PCA objective function in Expression (2.6) has the corresponding value:

uT (CXXu) = uT (λu) = λuTu = λ. (2.15)

Consequently we find the first principle component u1 by computing the eigenvalues of
CXX and selecting the eigenvector ui with the largest corresponding eigenvalue λi. Thus
as u1 is the first direction corresponding to the maximal variance of the projected data, we
can use similar calculations to acquire the subsequent directions of maximal variance. We
require each subsequent direction to be orthogonal to those previous, which is identical to
sorting the remaining eigenvectors by their eigenvalues (e.g. Duda et al. (2001)).

The number of principle components selected from U for projection of X is the new re-
duced dimensionality of X̂; in other words, the original n-dimensional dataX is projected
onto d(� n)-dimensional linear subspace spanned by these top eigenvectors/principle
components. If the data to be considered by PCA did indeed lie in a linear subspace, the
method is guaranteed to discover the subspace’s dimensionality and thereby produce a
compact representation.

2.1.1 Properties of PCA

The objective function of PCA in Expression (2.6) can be equivalently written as the
following Rayleigh quotient optimization problem:

PCA objective function
uTCXXu

uTu
. (2.16)

which is a form of optimization problem that can be solved as an eigenvalue problem, and
generalized eigenvalue problems as we will see with the next dimensionality reduction
techniques.
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Figure 2.3: LDA finds the most discriminative vector directions, projection of the data upon which,
most separates the data classes. (Figure courtesy of Elisabeth Georgii, PhD Tutorial, 2007.)

The resulting representation of the data after projection onto the principle components,
X̂ , is decorrelated and has a diagonalized covariance matrix with the eigenvalues along
the diagonal. Redundancies in the data have been removed by projection onto the eigen-
vectors of the covariance matrix, U .

Limitations include that PCA only considers the variance in the data and which corre-
sponds to an implicit assumption that the data is generated from a Gaussianity distribu-
tion, which in practice is very unlikely. Furthermore this corresponds to the (often faulty)
assumption that the underlying structure of the data can be represented via the variance.
This property of PCA also renders it sensitive to outliers, as outliers in a signal will man-
ifest in high variance. Additionally, PCA can only consider one domain of data at a time.
As it is unsupervised, it can make no use of labels even if available, a potential drawback
which as we will see, the other methods to be discussed can avoid. Finally, PCA can only
discover linear patterns in the data, a limitation faced by all the dimensionality reduc-
tion methods to be discussed in this chapter. Non-linear alternatives will be discussed in
Chapter 3.
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Figure 2.4: PCA versus LDA. The green line is the projection direction found by PCA (first prin-
ciple component), whereas the cyan line is the projection direction found by LDA.

2.2 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a supervised dimensionality reduction technique,
generally used either in classification or as a pre-processing feature extraction step (Bel-
humeur et al. (1997)). For classification, LDA is employed to find the best representation
to separate classes within the data, resulting in its projection onto a 1-dimensional sub-
space. When used for feature extraction, the resulting separated-class projection can be
used for i.e. later classification. As such, the goal of LDA is to discover a direction
in the data upon which to project the data to maximally discriminate its classes. This
low-dimensional projection of the data is accomplished by: 1) maximizing the variance
between the classes (points belonging to different classes are far from each other) and 2)
minimizing the variance within the classes (points belonging to same classes are near to
each other). See Figure 2.3 for an illustration of such a projection. In this example, if the
data were projected on the original x- or y-axis, the classes would intermingle, however
they are not intermingling on the projection line, but instead are decently distinguished.

For illustration of LDA, we will consider the 2-class case. Consider once more the
sample of X = (x1, . . . , xn) ∈ Rd×n to which we have the class label information of
Y = (y1, . . . , yn) with yi ∈ {−1,+1}. We denote the data belonging to the positive and
negative classes as X+ = {xi : yi = +1} and X− = {xi : yi = −1}, and data after
projection as X̂+ and X̂−. Instead of the sample variances themselves, we define the
squared distance between the 1-dimensional projected class sample means as the scatter
between the classes as follows:
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SB = (m+ −m−)(m+ −m−)T , (2.17)

where SB is the between-class scatter matrix between the classes, andm+ andm− are the
sample means for the projected points (the projection of the sample points corresponding
to that class label). Furthermore we define the scatter within the classes in the sample as
the squared distance between the class means:

SW =
∑

X+={xi:yi=+1}

(xi −m+)(xi −m+)T +
∑

X−={xi:yi=−1}

(xi −m−)(xi −m−)T

(2.18)

= S+ + S− (2.19)

where SW is the within-class scatter matrix and S+ and S− are the scatter matrices for
the classes individually.

As the optimization goal is to find a projection u which maximizes the separation of the
classes, we want to maximize the ratio of these two numerical quantities (ratio of between-
class and within-class scatter), which will yield the maximal separation of the classes. In
order to work towards the formulation of this optimization goal, we rewrite these scat-
ter formulations (Equations (2.17) and (2.18)) as their projections onto the direction u
beginning with the between-class scatter:

ŜB = (uTm+ − uTm−)2 (2.20)

= uT (m+ −m−)(m+ −m−)u (2.21)

= uTSBu (2.22)

and the within-class scatter:

ŜW = uTSWu. (2.23)

When label information corresponding to the class data is present, LDA can often out-
perform PCA (see Figure 2.4) (Blaschko and Lampert (2008)). However, solving LDA
entails estimating the covariance matrix for each class, thus implying a need for larger
sample size in order to avoid overfitting. When the sample size is insufficient with respect
to the dimensionality of the data, LDA overfits to the data and PCA generally offers better
performance (Andersen and Martinez (2001)). This is an important topic for discussion
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in later sections.

These matrices SB and SW are related to the cross-covariance matrix of the samples, and
the covariance matrix for combined class samples (S+ and S−), respectively. To note
is that both matrices are symmetric and positive semidefinite, important properties when
solving generalized eigenvalue problems.

Thus the optimization problem for LDA can be expressed by maximizing the following
objective function with respect to u:

LDA objective function
uTSBu

uTSWu
, (2.24)

which we can equivalently rewrite as the maximization of this constrained optimization
problem:

uTSBu (2.25)

subject to:

(2.26)

uTSWu = 1, (2.27)

and can solve as a generalized eigenvalue problem, by employing the same method of
Lagrangian formalism as with the objective function of PCA in Equation (2.6). The La-
grangian function for LDA is:

L(u, λ) = uTSBu− λ(uTSWu− 1), λ ∈ R (2.28)

where λ is a Lagrange multiplier used to enforce the constraint. The minimization of L
is:

∂L

∂u
(u, λ) = 0 (2.29)

⇔ 2SBu− 2λSWu = 0 (2.30)

⇔ SBu = λSWu, (2.31)
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where the last Expression (2.31) is a generalized eigenvalue problem.

The solution in Equation (2.31) yields the direction u upon which the projection of the
data will be maximally separated, the classes maximally discriminated. Thus the original
d-dimensional data setX is now reduced to, in this case, the 1-dimensional discriminative
subspace. As u is the first direction for the projection X̂ that corresponds to maximal
separations of the classes in X , we can use similar calculations as in PCA to acquire the
next directions, by searching for orthogonal directions, the next generalized eigenvectors.

2.2.1 Properties of LDA

The afore described 2-class case of LDA can be generalized to data containing k-classes.
Instead of estimating the scatter matrices SB and SW for only 2 classes, they are estimated
for the k different classes exactly as they were in Equations (2.17) and (2.18), respectively.

2.3 Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis (CCA) is a very general subspace method. It is a super-
vised technique that is closely related to both of the previous techniques of PCA and LDA.
It is a dimensionality reduction technique that can take advantage of data in two domains,
in contrast to both PCA and LDA, which can consider only one. As such, it searches
simultaneously for projection directions in both data spaces in question such that the cor-
relation is maximized between said projection vectors in each space. CCA is used for a
broad range of applications: from information retrieval (Hardoon et al. (2004)), to multi-
modal data clustering (Blaschko and Lampert (2008)), to independence tests (Hardoon
et al. (2007)).

CCA takes advantage of data samples that are available in multiple modalities, specifi-
cally, we assume the data composes various views of some latent process. See Figure 2.5
for an illustration of this type of process and the resulting data samples. Because the
available data samples (i.e. X and Y ) are assumed to be representations of the same
process (i.e. Z), this suggests a relationship between the data sets. Because CCA seeks
to maximize correlation between projections in both X and Y , this induced dependence
from Z allows CCA to utilize information in both variables to drive the discovery of the
underlying structure in Z. This property also implies the close relation between CCA
and mutual information (Borga and Borga (1998)). CCA finally yields a dimensionality-
reduced representation (projection) of Z in each modality X and Y that are maximally
correlated with each other.
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z

x y

(a) Paired data.

Figure 2.5: With paired data, there are two observed output variables, x and y, which are gener-
ated by some underlying process z. Given that x and y are assumed to be stemming from the same
underlying process, this induces a dependence between x and y.

Figure 2.6: PCA versus CCA. We have two noisy samples of a signal, the data modalities X
and Y , with pairings between samples as indicated by the number of the sample point. The
directions found from PCA (center) and CCA (right) demonstrate CCA’s ability to ignore the non-
correlated directions of high-noise in both modalities, yielding instead directions of the signal in
each. (Figures adapted courtesy of Christoph Lampert, ECML, (2008))
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CCA often offers advantages above PCA. To illustrate, consider data samples available
in two domains, X and Y , shown in Figure 2.6. In each of these samples, the data has
higher variance in the noise direction than in the signal direction. As PCA concentrates on
the variance of the data as the only criterion for projection directions, it will be sensitive
to these high-noise directions and will not discover the meaningful representation along
the signal direction (center depictions in Figure 2.6). CCA however can consider both X
and Y domains simultaneously. Given that noise is unlikely to be correlated across data
domains, CCA can identify that the data modalities are highly correlated when projected
to the one (signal) direction, but yield little correlation when projected to the other (noise)
direction. Thus, CCA ignores the semantically meaningless noise directions and instead
chooses the directions of the signal in both the X and the Y domain (right depictions in
Figure 2.6).

To derive CCA mathematically, we introduce Pearson’s correlation coefficient (see Ap-
pendix) in the derivation of the 2-modality case of CCA. Let any paired data set, which we
will denote X and Y , compose the paired data set D = {(x1, y1), . . . , (xn, yn)} ∈ Rd×n.
Pearson’s correlation coefficient between this set is defined as:

ρXY =
cov(X, Y )√
var(X)var(Y )

(2.32)

=
1
n

∑n
i=1(xi −mx)(yi −my)√

1
n

∑n
i=1(xi −mx)2 1

n

∑n
i=1(yi −my)2

, (2.33)

where mx and my the empirical means of X and Y respectively. We assume that the
data is centered at the origin (subtract the mean of the respective data set from each
respective sample), from which it follows that the projected data is also centered at the
origin (

∑n
i x̂i −→

∑n
i u

T
i xi = uTi

∑n
i xi = 0). Now we want to maximize the correlation

between the projections of the data in each space, which is denoted e.g.

x̂i = uTxxi (2.34)

ŷi = uTy yi. (2.35)

So we introduce directions/vectors ux and uy with respect to which we can maximize
the expression in Equation (2.32). This can be expressed with the following optimization
problem:
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max
ux,uy

ρX̂Ŷ = max
ux,uy

1
n

∑n
i=1 x̂iŷi√

1
n

∑n
i=1 x̂

2
i

1
n

∑n
i=1 ŷ

2
i

, (2.36)

and by expanding the projections, we arrive at the following expression:

max
ux,uy

ρX̂Ŷ = max
ux,uy

1
n

∑n
i=1 u

T
x1
xiu

T
y1
yi√

1
n

∑n
i=1(ux1xi)

2 1
n

∑n
i=1(uy1yi)

2
. (2.37)

By writing the sums over all samples in their matrix forms, Expression (2.37) can be
equivalently expressed by maximizing the following objective function:

CCA objective function
uTxCXY uy√

(uTxCXXux)(u
T
yCY Y uy)

. (2.38)

where the the cross- and auto-covariance matrices of X and Y are denoted by CXY ,
CXX /CY Y , respectively. We can equivalently rewrite the objective function as the follow-
ing constrained optimization problem:

uTxCXY uy (2.39)

subject to:

uTxCXXux = 1 (2.40)

uTyCY Xuy = 1 (2.41)

We can rewrite this constrained optimization problem as an unconstrained function by
using Lagrangian formalism as demonstrated previously with LDA in Section 2.2. The
corresponding Lagrangian function is:

L(ux, uy, µ, ν) = uTxCXY uy − µ(uTxCXXux − 1)− ν(uTyCY Y uy − 1) (2.42)

The minimization of this Lagrangian function is obtained as follows
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∂L

∂ux
(ux, uy, µ, ν) = 0 (2.43)

⇔ CXY uy − 2µCXXux = 0 (2.44)

⇔ CXY uy = 2µCXXux (2.45)

∂L

∂uy
(ux, uy, µ, ν) = 0 (2.46)

⇔ CY Xux − 2νCY Y uy = 0 (2.47)

⇔ CY Xux = 2νCY Y uy (2.48)

Minimization of the CCA Lagrangian function results in following linear system:

CXY uy = 2µCXXux (2.49)

CY Xux = 2νCY Y uy, (2.50)

which we can write in matrix notation as follows(
0 CXY

CY X 0

)(
ux
uy

)
=

(
(2µI 0

0 2νI)

)(
CXX 0

0 CY Y

)(
ux
uy

)
. (2.51)

Through algebraic simplification we can manipulate the above system in two ways. First,
in order to make the matrix on the left side positive definite and allow it’s optimization to
be more efficient, we add the matrix and coefficients of the right side of both equations to
the entire system. This results in the following linear system:

CXXux + CXY uy = 2µCXXux + CXXux (2.52)

CY Xux + CY Y uy = 2νCY Y uy + CY Y uy, (2.53)

which we write again in matrix notation(
CXX CXY
CY X CY Y

)(
ux
uy

)
=

(
1 + 2µI 0

0 1 + 2νI

)(
CXX 0

0 CY Y

)(
ux
uy

)
. (2.54)

Second, we notice the symmetry of the cross-covariance matrices, thus
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CXY = CY X , (2.55)

which allows further algebraic simplification such that 1 + 2µ = 1 + 2ν. Thus the system
can be written as

(
CXX CXY
CY X CY Y

)(
ux
uy

)
= (1 + 2µ)

(
CXX 0

0 CY Y

)(
ux
uy

)
. (2.56)

Which we note is the form of a generalized eigenvalue problem. As such, we note that the
eigenvalue (1 + 2µ) can be substituted by the variable λ, and the minimization problem
is written as the following generalized eigenvalue problem:

(
CXX CXY
CY X CY Y

)(
ux
uy

)
= λ

(
CXX 0

0 CY Y

)(
ux
uy

)
. (2.57)

This solution of CCA in Equations (2.57) yields the first directions that maximize the
correlation between the data projection in each space: u1

x and u1
y. Maximization of the

objective function in Expression (2.38) yields the correlation coefficient, explaining the
magnitude of the correlation between the data when projected on ux and uy. The resulting
vectors u1

x and u1
y are the first basis vectors of the lower-dimensional representations of

X and Y ; the assumption is that the lower-dimensional representation corresponds to the
structure in the latent process Z. The next directions of maximum correlation between
data projections can be discovered, similarly as in PCA and LDA, by sorting the remain-
ing eigenvectors by their generalized eigenvalues, e.g. u2

x and u2
y with the next highest

eigenvalues are the next directions.

2.3.1 Properties of CCA

This 2-modality derivation of CCA can be generalized to more than two modalities (illus-
trated in Figure 2.7), {X1, . . . , Xk}, by solving the following eigenvalue problem:

C11 . . . C1k

... . . . ...
Ck1 . . . Ckk


u1

...
uk

 = λ

C11 . . . 0
... . . . ...
0 . . . Ckk


u1

...
uk

 . (2.58)

which includes 2-modality CCA as a special case.
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z

x x x.  .  .
k1 2

(a) Multimodal data.

Figure 2.7: With data available in multiple modalities, an underlying process may induce depen-
dence between all observed output variables (modalities).

This generalized solution in Equation (2.58) yields projection directions u1, . . . , uk that
correspond to the maximum correlation between all of the spaces.

2.3.2 Special Cases of CCA

LDA. Note that after this derivation of the 2-modality case, when the Y modality consists
of values in {−1, 1} instead of real continuous values, CCA and LDA learn the same
projection directions (making LDA a special case of CCA). (Cai et al. (2007))

Least squares Regression. Least squares and CCA can be identically expressed if data
are only available in two modalities, i.e. X and Y , and one modality contains the 1-
dimensional labels corresponding to the other modality. (Sun et al. (2008) Sun et al.
(2009))



Chapter 3

Nonlinear Dimensionality Reduction

When data is acquired from the natural world and represented digitally, it generally resides
in very high-dimensional vector spaces, as described in Chapter 2. As we saw, by manip-
ulating the basis vectors of the subspace in which the data is living, patterns which were
previously non-discernible can be made reasonably salient. As illustrated by the linear
methods of PCA, LDA, and CCA, this is commonly done by projecting the entire data set
in question to a ”more appropriate” subspace of fewer dimensions (dimensionality reduc-
tion), in which the previously unidentifiable structure could be discerned. However, when
the data contain more complex patterns, these linear methods offer little help in unveiling
them. Consider for example, the data in Figure 3.1 (a): they exhibit a clear ”ring-like” pat-
tern consisting of samples in two classes, red squares and green squares. But yet, there is
no linear projection that leads to a lower dimensional representation in which the classes
are well separated (every linear projection would heavily mix the classes).

Consider the same sample data in Figure 3.1 (a). There may be a more suitable coordinate
system than the Cartesian to which the data could be mapped before being able to apply
LDA to find a projection direction upon which the two classes are distinguished, shown
in (b) of the figure (e.g. a projection direction parallel to the r-axis would suffice). As
such, we need some mapping function to perform this coordinate transform where the
important descriptions of the data classes, the features, are now linearly separable in this
new space. We call the original space, which in this example is the Cartesian coordinates,
the input space, and the space the data is mapped to, i.e. that of the polar coordinates the
feature space. We call this mapping function φ the feature map. The specific feature map
φ for the polar coordinates of (x, y) ∈ R2, (x, y) 7→ (r, ϕ) is expressed by:

23
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(a) Cartesian coordinates.
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(b) Polar coordinates.

Figure 3.1: Mapping from Cartesian coordinates to Polar coordinates, (x, y) 7→ (ϕ, r). The pat-
tern in the data is complex and difficult to characterize when represented in Cartesian coordinates
(a), but when transformed to polar coordinates, the structure becomes simpler to characterize e.g.
via Linear Discriminant Analysis, the two classes within the data could be easily separated (b).
(Figures from Lampert (2009)).

φ :

(
x

y

)
7→
(√

x2 + y2

arctan y
x

)
. (3.1)

Thus by mapping input data (x, y) from its original space to a feature space by said non-
linear map φ, the complex nonlinear pattern in the data is now much more clear for the
application of linear dimensionality reduction techniques to further extract the pattern of
the two classes in the data.

The methods from the previous chapter can be extended and generalized to account for
such nonlinear patterns. In order to identify patterns of greater complexity in a data
sample, there needs to be a similar intermediate steps in order for the previously discussed
methods to be able to detect them. Namely, a more suitable representation of the data for
the task at hand: a coordinate transformation before dimensionality reduction.

This general approach can be applied to any input data set x1, . . . , xn ∈ X to map it to its
individual φ-induced feature spaceH as follows:

φ : X → H (3.2)

x 7→ φ(x), (3.3)
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Figure 3.2: nonlinear feature mapping. The feature map, transformation function φ, takes a
nonlinear pattern in the original vector space and embeds it in another space, in which the pattern
becomes linear. (Figure courtesy of Schölkopf and Smola (2002))

which aids in representing data containing nonlinearities. See Figure 3.2 for a general
illustration.

In this chapter, I will describe how the dimensionality reduction techniques of Chap-
ter 2 can be generalized to account for nonlinearities in data. As in the previous chapter,
the nonlinear extensions can be mathematically expressed as generalizations of Principle
Components Analysis (PCA), thus we will again begin there.

3.1 PCA in Feature Space

We will outline the above concepts in the context of PCA. Recall that PCA reduces the
dimensionality of a data set by finding the direction(s) in the data where the data projec-
tions have maximal variance by calculating the top eigenvectors of the covariance matrix
of the data set (e.g. the principle components). All of this can be performed in feature
space in order to find the potentially nonlinear principle components.

Let X = (x1, . . . , xn) ∈ Rd×n be the data set centered at the origin, the covariance matrix
of which is CXX = 1

n
XXT . PCA, before being mapped to a feature space, is expressed

by the optimization problem:
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max
u

uTCXXu, (3.4)

subject to:

uTu = 1 (3.5)

Now we map X to some feature spaceH by the feature map φ. We perform this mapping
as follows:

X = (x1, . . . , xn) 7→ Φ(x) = (φ(x1), . . . , φ(xn)), (3.6)

calling the result Φ, which is the representation of X inH as mapped by φ.

Now the covariance matrix of X in the feature spaceH becomes

CΦΦ :=
1

n

n∑
i=1

φ(xi)φ(xi)
T . (3.7)

Substituting the CΦΦ into the previous PCA Expression (3.4) we arrive at the following
optimization problem:

max
ũ

ũTCΦΦũ, (3.8)

subject to:

ũT ũ = 1, (3.9)

the solution for ũ of which can be obtained by solving the following eigenvalue problem:

CΦΦũ = λũ, (3.10)

where the eigenvector ũi with the highest eigenvalue λi is the first principle component
within the feature space H, analogous to the eigenvector ui from PCA performed in the
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input space (Section 2.1). As in the original PCA, the further principle components can
be obtained by taking the next ũi with the highest λi. By mapping the input data X first to
a feature spaceH via φ, this is a pre-processing step to ’linearize’ the nonlinear principle
components, such that PCA can locate the correct directions to which they correspond.
From the eigenvalue problem in Equation (3.10) we see that the solution ũ lies in the
span of the training examples φ(x1), . . . , φ(xn), and thus the numerical solution can be
expressed as:

ũ =
n∑
i

αiφ(xi) (3.11)

3.2 Implicit Mapping into Feature Space

We use the notation Φ to denote the matrix where each row corresponds to a feature
mapped data point, φ(xi)

T . Because ũTCΦΦũ = ũTΦTΦũ and ũ = Φα (Equation (3.11)),
we can take the optimization of PCA in Expression (3.8) and by searching over α1, . . . , αn,
we can express the equivalent problem:

max
α

αTΦTΦΦTΦα, (3.12)

subject to:

ũT ũ = 1 (3.13)

=⇒
n∑

i,j=1

αiαj〈φ(xi), φ(xj)〉 = 1. (3.14)

We note that φ is only present in the form of inner products, e.g., φTφ = 〈φ, φ〉. We can
define the kernel function k : Rd × Rd 7→ R of φ by the following identity:

k(x, x′) := 〈φ(x), φ(x′)〉. (3.15)

Every k of this type is symmetric.
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Proof. Let k(x, x′) = 〈φ(x), φ(x′)〉. Show that

∀x, x′ ∈ X : k(x′, x) = k(x, x′). (3.16)

For arbitrary x, x′ ∈ X :

k(x, x′) = 〈φ(x), φ(x′)〉 = 〈φ(x′), φ(x)〉 = k(x′, x) (3.17)

Thus, k is symmetric because the inner product 〈·, ·〉 is symmetric.

Every k is also positive definite. That is, for all c1, . . . , cn ∈ R, all N ∈ N, and for all
x1, . . . , xN , the matrix K ∈ RN×N where Kij = (k(xi, xj))i,j is positive semidefinite.

Proof. Let c1, . . . , cn be arbitrary ∈ R:

n∑
i,j=1

ciKijcj =
n∑

i=1,j=1

cik(xi, xj)cj (3.18)

=
n∑

i=1,j=1

ci〈φ(xi), φ(xj)〉cj (3.19)

=
n∑
i=1

n∑
j=1

〈ciφ(xi), φ(xj)cj〉 (3.20)

= 〈
n∑
i=1

ciφ(xi),
n∑
j=1

φ(xj)cj〉 (3.21)

= ‖
n∑
i=1

ciφ(xi)‖2 ≥ 0 (3.22)

Thus φ induces a positive definite kernel function k. Furthermore, for the kernel function
k : X × X → R it holds that for any finite set of data points x1, . . . , xn ∈ X , there exists
a kernel matrix K

Kij := k(xi, xj) (3.23)

which is symmetric (Kij = Kji) as well as positive semidefinite (e.g., for all vectors t ∈
Rn it holds that

∑n
i,j=1 tiKijtj ≥ 0). This is also called a Gram matrix of k. Additionally,
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it can be proved (see Schölkopf and Smola (2002)) that for any such positive definite k,
there exists a Hilbert spaceH and a feature map φ : X 7→ H such that

k(x, x′) = 〈φ(x), φ(x′)〉H (3.24)

where the inner product inH is denoted by 〈·, ·〉H. This is called Mercer’s condition.

The kernel k provides all the necessary information about the φ mapping of X . One
can substitute k into any algorithm that only needs inner products of the data points, and
thereby do not need the explicit mapping of the data points with φ. This is referred to as
the kernel trick (Schölkopf and Smola (2002)).

To illustrate this, we consider an optimization problem with the kernelization method of
φ; specifically we evaluate the problem of PCA in feature space (Equation (3.4)). Solving
this optimization problem yields α1, . . . , αi ∈ R for which we can compute the projection
(solution shown in Equation (3.11)):

ũ =
n∑
i

αiφ(xi). (3.25)

This solution for ũ is computable without φ, given

x̃i = ũTi x (3.26)

= 〈ũ, φ(x)〉 (3.27)

= 〈
n∑
i

αiφ(xi), φ(x)〉 (3.28)

=
n∑
i

αi〈φ(xi), φ(x)〉 (3.29)

=
n∑
i

αik(xi, x) (3.30)

This demonstrates that we only need the inner product values from the kernel function k
to evaluate and derive solutions to dimensionality reduction problems such as PCA (e.g.
with function form of dimensionality reduction as f(x) = x̃ where f : X 7→ Rn), and
thus we replace φ with k. We call this process kernelization.

As shown, the whole kernelization process needs only the inner products (kernel function
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k), and not the mapping (non)linear function φ itself (kernel trick). This means we can
do (non)linear dimensionality reduction with any input for which we can define a positive
definite kernel function. Kernelization has several useful implications. First, needing only
the inner product information contained in the kernel function simplifies costly demands
of the problem. As we do not need the explicit knowledge of φ in order to learn in its
induced feature space H, and by not having to compute and store φ, we can save a lot
of space and computation time. As shown above, we can acquire the numerical solution
for any projection in this implicitly defined feature space based only on the inner prod-
ucts of the data points. Second, it allows for a generalized solution: the previous linear
dimensionality reduction methods are generalized to account for nonlinear data patterns.
In this way, kernelization is also used as a pre-processing step for the dimensional reduc-
tion of data containing nonlinear structure: the data is nonlinearly mapped into some new
feature space, in which the complex patterns are now handleable linearly as described in
Chapter 2.

3.3 Kernel Canonical Correlation Analysis (KCCA)

Although all of the dimensionality reduction techniques can be nonlinearly extended via
kernelization as described above, we will focus on the kernelization of CCA (KCCA) (see
e.g. Leurgans et al. (1993); Lai and Fyfe (2000); Bach and Jordan (2002); Hardoon et al.
(2004)).

CCA (Section 2.3) seeks to maximize the correlation between principle directions in two
or more separate data domains, or modalities of some underlying process, simultaneously.
Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two modalities and ux and uy be the
projection directions within the domains, respectively. CCA can be expressed as the
following optimization problem:

max
ux,uy

uTxCXY uy√
(uTxCXXux)(u

T
yCY Y uy)

= max
ux,uy

uTxX
TY uy√

(uTxX
TXux)(uTy Y

TY uy)
(3.31)

which can be solved as a generalized eigenvalue problem (Section 2.3), yielding the first
directions u1

x and u1
y of maximum correlation between the projected X and Y data sets.

As described previously in Section 3.2, in order to kernelize the above expression of CCA,
we need to define a mapping of the data sets
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X = {x1, . . . , xn} (3.32)

Y = {y1, . . . , yn} (3.33)

into their respective kernel Hilbert spaces, as denoted by the kernel functions

kx : X × X → R (3.34)

ky : Y × Y → R (3.35)

with induced feature mapping functions

Φx : X → Hx (3.36)

Φy : Y → Hy (3.37)

Φx = (φx(x1), . . . , φx(xn)) (3.38)

Φy = (φy(y1), . . . , φy(yn)) (3.39)

which, when we substitute these φ-mapped input data sets in the previous expression,
yields the following expression of CCA within the kernel Hilbert spaceH:

max
ũx,ũy

ũTxΦT
xΦyũy√

(ũTxΦT
xΦxũx)(ũTy ΦT

y Φyũy)
. (3.40)

We can denote the projection directions ũx and ũx as the linear combination between
coefficients within the Hilbert spaces and with respective mapped data sets. This results
in the dual representation of the projection directions within the Hilbert spaces:

ũx =
∑
i

αiφx(xi) = Φxα (3.41)

ũy =
∑
i

βiφy(yi) = Φyβ. (3.42)

Substituting these dual variables into the previous optimization problem in Expression (3.40),
we arrive at its dual representation (as with kernel PCA and as illustrated in Section 3.2):
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max
α,β

αTΦT
xΦxΦ

T
y Φyβ√

(αTΦT
xΦxΦT

xΦxα)(βTΦT
y ΦyΦT

y Φyβ)
. (3.43)

Furthermore, we denote the kernel matrices as

[Kx]ij := kx(xi, xj) = 〈φx(xi), φx(xj)〉, (3.44)

[Ky]ij := k(yi, yj) = 〈φ(yi), φ(yj)〉, (3.45)

Kx := ΦT
xΦx, (3.46)

Ky := ΦT
y Φy. (3.47)

and substituting these into Expression (3.43) results in the following kernelized objective
function to be maximized:

KCCA objective function
αTKxKyβ√

(αTKxKxα)(βTKyKyβ)
. (3.48)

Analogous as performed by CCA in the previous chapter, we can write the above expres-
sion as the following constrained optimization problem:

max
α,β

αTKxKyβ (3.49)

subject to:

(3.50)

αTKxKxα = 1 (3.51)

βTKyKyβ = 1, (3.52)

upon which we can utilize Lagrangian formalism to construct the following unconstrained
minimization problem:

L(λα, λβ, α, β) = αTKxKyβ − λα(αTKxKxα− 1)− λβ(βTKyKyβ − 1). (3.53)

The minimization of this Lagrangian function is obtained as follows
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∂L

∂λα
(λα, λβ, α, β) = 0 (3.54)

⇔ KxKyβ − 2λαKxKxα = 0 (3.55)

⇔ KxKyβ = 2λαKxKxα (3.56)

(3.57)

∂L

∂λβ
(λα, λβ, α, β) = 0 (3.58)

⇔ KyKxα− 2λβKyKyβ = 0 (3.59)

⇔ KyKxα = 2λβKyKyβ (3.60)

from which, following the same steps as with CCA in Chapter 2 (again, algebraically
manipulating the system such that the matrix on the left is positive definite), we can derive
the following generalized eigenvalue problem:

(
KxKx KxKy

KyKx KyKy

)(
α

β

)
= λ

(
KxKx 0

0 KyKy

)(
α

β

)
. (3.61)

The solution to the above eigenvalue problem yields the coefficients α and β in the Hilbert
spaces Hx and Hy, from which we obtain the directions ũx and ũx by Equations (3.41)
and (3.42), respectively, that maximize the correlation between the projections of X̃ and
Ỹ . We can again use the Representer theorem to acquire a numerical solution by rewriting
this dual representation of the projections (the result from the first use of the Representer
theorem, shown in Equations (3.41) and (3.42)) into the their primal form, yielding weight
vectors ũx and ũy. These vectors in the Hilbert spaces are analogous to the ux and uy in
the input spaces resulting from Equation (2.57).

3.3.1 Tikhonov Regularization

In the case that either Kx or Ky is invertible, the solution to Equation (2.57) will yield
perfect correlation, but is trivial and does not learn anything (Leurgans et al. (1993); Bach
and Jordan (2002); Hardoon et al. (2004)). This type of degenerate solution requires
additional steps to be avoided.

As discussed in Chapter 1, we need to regularize solutions of optimization problems in or-
der to avoid overfitting to the given data set and not being able to make general statements
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about unseen data. In other words, if we only minimize the training error (Chapter 1, Fig-
ure 1.2), this can lead to numerical instabilities and poor generalization ability. Thus far
for dimensionality reduction we have considered functions of the form in Equation (3.65),
but with the regularization term set to zero.

Consider the optimization problem for KCCA in Expression (3.49) in the case of either
an invertible Kx or Ky. As α and β are directions in their respective Hilbert spaces Hx

and Hy, we can arbitrarily fix e.g. α, and look for a maximally correlated direction in
the other space. Let α be fixed and set β := K−1

y Kxα. Substituting these values into
Expression (3.49), KCCA is expressed with the optimization problem:

αTKxKyK
−1
y Kxα⇔ αTKxKxα (3.62)

subject to:

αTKxKxα = 1 (3.63)

(K−1
y Kxα)TKyKyK

−1
y Kxα⇔ αTKxKxα = 1. (3.64)

From this illustration we can observe the problem with invertible kernel matrices. The
expression we want to maximize (Expression (3.62)) is identical to its constraints set to
1. This is a trivial solution because e.g. once we arbitrarily set direction α, we can find a
direction β with which it is perfectly correlated (ρ = 1).

Therefore we need to enforce the learning of non-trivial directions through regulariza-
tion. Because in the situation of learning trivial directions that yield perfect correlation
there is minimal covariance in the solution, we want to enforce some degree of covari-
ance to exist in the solution (in order that the matrices are no longer invertible and e.g.
KyK

−1
y = I). Additionally we want to control overfitting of the solution to the training

data, and thus need to control the flexibility of the learnable projection directions in the
Hilbert space by introducing a regularization term to enforce smooth gradients in the asso-
ciated projection functions. Tikhonov regularization enforces that the projection function
fproj(x̃) = ũx

TΦx = αTΦT
xΦx = αTKx will have a smooth gradient. This involves the

addition of a regularization term to penalize the solution via the L2-norm, specifically by
punishing large ‖∇fproj(x̃)‖2 to some parameter-controlled degree (regularization param-
eter), and as such the norm of the projected solution ‖ũx‖2 will be accordingly punished
(small). As such, the learned solution is more generalizable to unseen (test) data as large
oscillations in the solution (which would i.e. perfectly match the training data and produce
high error with testing data) are discouraged with the regularization term. The resulting
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solution is, in other words, smooth with respect to the ambient space.

Thus we introduce Tikhonov regularization to the objective function for KCCA in Equa-
tion (3.48) to avoid degenerate solutions and discourage overfitting, resulting in the fol-
lowing expression:

KCCA objective function
αTKxKyβ√

(αTKxKxα + εx‖ũx‖2)(βTKyKyβ + εy‖ũy‖2)
,

(3.65)

where εx and εy are the regularization parameters controlling the degree of penalization
(regularization) of the norms in each Hilbert space. Since ‖ũx‖2 = ũTx ũx = αTΦT

xΦxα =

αTKxα, this can be equivalently rewritten as

KCCA objective function
αTKxKyβ√

(αTKxKxα + εxαTKxα)(βT (KyKyβ + εyβTKyβ)
,

(3.66)

and simplified as the following expression

KCCA objective function
αTKxKyβ√

αT (KxKx + εxKx)αβT (KyKy + εyKy)β
. (3.67)

With the identical steps as described with the unregularized version of KCCA, we can
write the above regularized expression as a constrained optimization problem, where both
parts of the denominator must be equal to 1, and we maximize

αTKxKyβ (3.68)

subject to:

αTKxKxα + εxα
TKxα = 1 (3.69)

βTKyKyβ + εyβ
TKyβ = 1, (3.70)

with the corresponding Lagrangian function:



36 CHAPTER 3. NONLINEAR DIMENSIONALITY REDUCTION

L(λα, λβ, α, β) = αTKxKyβ−λα(αTKxKxα+εxα
TKxα−1)−λβ(βT (KyKyβ+εyβ

TKyβ−1).

(3.71)

The minimization of this Lagrangian function is obtained as follows

∂L

∂λα
(λα, λβ, α, β) = 0 (3.72)

⇔ KxKyβ = 2λα(KxKxα + εxKxα) (3.73)

(3.74)

∂L

∂λβ
(λα, λβ, α, β) = 0 (3.75)

⇔ KyKxα = 2λβ(KyKyβ + εyKyβ) (3.76)

from which, by following the same algebraic steps with regular KCCA, we can derive the
following generalized eigenvalue problem:

(
Kx(Kx + εxI) KxKy

KyKx Ky(Ky + εyI)

)(
α

β

)
= λ

(
Kx(Kx + εxI) 0

0 Ky(Ky + εyI)

)(
α

β

)
.

(3.77)

As with KCCA described earlier, the solution to the above eigenvalue problem yields the
coefficient vectors α1 and β1, which maximize the correlation between the ΦX and ΦY

data projections. We acquire a numerical solution for the first weight vectors ũ1
x and ũ1

y

by Equations (3.41) and (3.42). These vectors in the Hilbert spaces are analogous to the
u1
x and u1

y in the input spaces resulting from Equation (2.57). As with the linear dimen-
sionality reduction methods, to obtain the further directions of maximal correlation, we
simply take the next eigenvectors αi and βi corresponding to the next highest eigenvalues
λi, leading to weight vector solutions of ũix and ũiy.



Chapter 4

Semi-supervised Learning

Until now, we have observed linear and nonlinear dimensionality reduction techniques
under the unsupervised (e.g. PCA) and the supervised (e.g. LDA, CCA) learning frame-
works. Now we will discuss a learning framework which can incorporate methods from
both of these frameworks, called semi-supervised learning.

In the introduction to machine learning in Chapter 1, we discussed the different types of
learning methods and the variety of data from which they can learn. In supervised learning
methods, all data samples under consideration have corresponding labels, indicating some
quality of interest for each data point (i.e. indication of class to which the data points
belong), whereas in unsupervised learning, we learn non-parametrically from data without
any corresponding labels. Semi-supervised learning can utilize a mix of data samples:
those with corresponding labels and those without. These methods can be very powerful
as an effect of the larger data sets they can consider and have the benefit of being less
expensive in terms of requiring less sample labels. However, there is a much greater
demand on the assumptions of the model. These strong model assumptions thus require
the rigorous selection of the model and accordingly, the structuring of this model to the
problem is of much greater importance. However when we select a good model for the
problem at hand and can make use of the unlabeled data, we can achieve greater inferential
performance. See Belkin et al. (2006), Chapelle et al. (2006), von Luxburg (2007), Zhou
and Schölkopf (2006), and Zhu (2005).

Often, this inclusion of additional (unlabeled) data can restructure our original hypotheses
about the patterns in a data set. For example, our original hypothesis about a data could
lead to the learning of a discriminant function, with which to project the data in which
the classes are maximally linearly separable (i.e. LDA in Section 2.2). However, when
we include unlabeled samples with our labeled samples in order to learn the discriminant
function (e.g. semi-supervised discriminant analysis, see Cai et al. (2007)), we may see

37
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(a) Small sample size (b) Larger sample size

Figure 4.1: With a small labeled sample size, the data exhibit e.g. a pattern which could be
projected such that the circle and diamond are discriminated (a), but with the inclusion of unla-
beled data in a semi-supervised framework, we are forced to readjust our hypotheses, as the data
now exhibit this circular pattern instead of the hypothesized linearly separable one (b). (Figures
from Belkin et al. (2006)).

that the relationship of the classes is not linear, but rather reveals a different structure
(Belkin et al. (2006)). See Figure for illustration.

4.1 Graph-based Methods: Manifold Regularization

Most semi-supervised methods utilize the geometry of the underlying distribution of the
observed data samples, and exploit its properties to enable the use of unlabeled data.
This forms a class of methods called manifold regularization, where a regularization term
is formed from labeled and unlabeled samples and is included in a given optimization
problem, thereby making the problem semi-supervised. Here we briefly introduce the
idea behind this type of regularization.

In order to make use of the geometry of the distribution, which we cannot directly observe,
we first need to form some estimate of it based on the data samples from it that we do
have. First, we make the manifold assumption, which states that high-dimensional data
lies on a low-dimensional manifold structure M, with M ⊂ R (Belkin et al., 2006).
A manifold is an n-dimensional space that locally looks like n-dimensional Euclidean
space, but whose global structure may be non-Euclidean. The manifold assumption for
high-dimensional data is the basis of most forms of semi-supervised learning methods.
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(a) Samples of manifold (b) Graph estimate of manifold

Figure 4.2: Example of samples from a low-dimensional manifold (a), and the corresponding
graph estimate based on the samples of the manifold (b). (Figures from von Luxburg, MLSS,
Bousquet et al. (2004)).

With this assumption, we can non-parametrically estimate the geometric structure of the
data manifold using the data samples. This is done by defining a graph whose nodes
consist of the data points and connecting edges between the data points that indicate the
”weight” or ”similarity” between those data points. See Figure 4.2 for an illustration of
observed data points and the manifold structure on which they lie, and a graph estimate
of that manifold structure.

Estimating the manifold structure does not require sample labels. We are able to make use
of data samples with and without labels and thus define a graph whose nodes consist of
samples from both labeled and unlabeled datasets (e.g. Hein et al. (2006); von Luxburg
(2007)) In Section 3.3.1 we introduced Tikhonov regularization as a way to avoid de-
generate solutions with KCCA and as a method to reduce overfitting of the learned so-
lution and increase its generalizability to unseen data. Manifold regularization methods
learn a more generalizable solution (when the manifold assumption holds with the given
dataset), but they can do so by making use of the mixed-data graph estimated manifold.
This type of regularization regularizes the learned solution with respect to the estimated
manifold structure, such that the solution is smooth along the manifold. In doing so, these
methods all estimate a function fM along the mixed-data graph estimate of the manifold,
and encourage solutions to have a small gradient with respect to this estimated structure.
Thereby when the manifold assumption holds with a given dataset, not only do these
methods allows one to make use of the data without labels, but also allow for exploitation
of a larger sample size and correspondingly provide better estimate of the underlying man-
ifold structure. When these conditions are met and we can obtain a decent estimate of the
manifold’s structure, these methods offer greater generalizability and reduction in overfit-
ting. See Figure 4.3 for an illustration of this concept, which also again demonstrates an
example of needing to restructure hypotheses about the data, as illustrated previously in
Figure 4.
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(a) Poor estimate (b) Better estimate

Figure 4.3: The number of data samples of a manifold corresponds to how well the structure of
the manifold is estimated. The manifold estimated by a graph consisting of few data points is a
poor estimate of the actual structure of the data manifold (a). However, with more data points,
the graph forms a better estimate of the manifold’s structure. (Figures from von Luxburg, MLSS,
Bousquet et al. (2004)).

As we are particularly interested in Laplacian regularization, we will only discuss the
derivation of the graph Laplacian and its associated regularization.

4.1.1 Laplacian Regularization

Laplacian regularization forms a graph estimate of the manifold structure called a graph
Laplacian, and regularizes the solution of the optimization problem with respect to it.

Suppose we have the data set Ẋ = {x1, . . . , xp} which is a composite set of the data
set with known labels, X = {x1, . . . , xn} (i.e. of the supervised training data set D =

{(x1, y1), . . . , (xn, yn)}, and the data set without known labels, X̃ = {xn+1, . . . , xp}.
As we want to estimate the manifold structure M of dataset Ẋ , we want estimate the
gradient of a function f alongM. We thus begin the graph estimate ofM by estimating
the gradient of the function fproj that projects the data onto the manifold

∇fproj(xi, xj) =
f(xi)− f(xj)

xi − xj
. (4.1)

As we want to use the manifold estimate in Equation (4.1) for regularization, fproj should
be smooth, and accordingly ‖∇fproj‖2 should be small (Belkin et al. (2006)). Thus we
define the following regularization functional
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1
2

n,n∑
i,j

wij (f(xi)− f(xj))
2 = 1

2

n,n∑
i,j

wij
(
f(xi)

2 − 2f(xi)f(xj) + f(xj)
2
)

(4.2)

=

n,n∑
i,j

wijf(xi)
2 −

n,n∑
i,j

wij (f(xi)f(xj)) (4.3)

= fj

(
n∑
j

wij −
n,n∑
i,j

wij

)
fi (4.4)

which pays attention to the similarity between data points (weights) encoded in wij . This
can be further simplified with the following matrix notation

fj

(
n∑
j

wij −
n,n∑
i,j

wij

)
fi = fT (D −W )f (4.5)

= fTLf (4.6)

whereL, the graph Laplacian estimate ofM, is the regularization functional that punishes
variations (via the L2-norm) in local regions using a similarity measure W defined based
on a neighborhood onM (von Luxburg (2007)). A common example is the Gaussian

Wij = wij := exp

(−‖xi − xj‖2

σ2

)
, (4.7)

where σ is often defined by the median distance between points.

When using the graph Laplacian in practice, it is generally normalized with D1/2 on both
sides

L̃ = D−1/2(D −W )D−1/2. (4.8)

Use of L̃ instead of L provides certain theoretical guarantees (von Luxburg et al. (2004))
and to better convergence properties of L to the Laplace-Beltrami operator (Belkin et al.
(2006)). Thus from now on when we refer to L, the L̃ is implied.
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(a) Smoothness in Tikhonov view. (b) Smoothness in Laplacian view.

Figure 4.4: Comparison of Tikhonov and Laplacian regularization, where in (a) the function
changes slowly over the ambient space, as indicated by the slow change in gray values. If samples
have very different gray values, they lie far apart. (b) shows a function that is unsmooth as
measured by Tikhonov, but smooth measured by the Laplacian of the samples. Samples that lie
really close together have similar gray values, but for samples that are not as close, the values can
differ based on the lower-dimensional manifold estimate Laplacian is considering.

In essence, we have defined a graph estimate L of the manifoldM by connecting the data
points (sampled fromM) based on their distance-weighted pairwise differences, in other
words by the the distance-weighted edges that are encoded in Wi,j .

This results in a regularization term L with the same idea as that behind Tikhonov regu-
larization discussed in Section 3.3.1, except instead of penalizing large variations in the
projection function with respect to the ambient space, the Laplacian regularization term
penalizes large variations (large gradients) in a local region only. This could result in
a globally oscillating projection function, but locally smooth, because it is smooth with
respect to the lower-dimensional manifold structure. Figure 4.4 illustrates how a func-
tion appears from the perspective of Laplacian regularization compared with Tikhonov
regularization.

4.2 Semi-supervised Laplacian Regularization of KCCA

We can regularize KCCA using Laplacian regularization in a semi-supervised frame-
work by calculating the graph Laplacian from the dataset containing both labeled and
unlabeled samples, as shown above. Assume we have the same 2-modality data set,
where we have additional data for both of the modalities but do not know the correspon-
dences of these data. We have the paired data set of training data with correspondence
{(x1, y1), . . . , (xn, yn)} and the additional samples without correspondences, {xn+1, . . . , xp}
and {yn+1, . . . , yp}. With these, our two augmented datasets are the X modality Ẋ =

{x1, . . . , xp} ∈ Rp, and the Y modality Ẏ = {y1, . . . , yn} ∈ Rn. The kernel matrices of
these two data sets are denoted by
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Kxx = Φ(X)TΦ(X) (4.9)

Kẋx = Φ(Ẋ)TΦ(X) (4.10)

Kẋẋ = Φ(Ẋ)TΦ(Ẋ) (4.11)

and

Kyy = Φ(Y )TΦ(Y ) (4.12)

Kẏy = Φ(Ẏ )TΦ(Y ) (4.13)

Kẏẏ = Φ(Ẏ )TΦ(Ẏ ). (4.14)

We calculate the corresponding graph Laplacians Lẋ and Lẏ, to the datasets Ẋ and Ẏ ,
respectively. These terms can be introduced for Laplacian regularization of the two data
domains into the optimization problem for Tikhonov regularized KCCA shown in Sec-
tion 3.3.1, Equation (3.67):

max
α,β

αTKẋxKyẏβ√
αT (KẋxKxẋ +Rẋ)αβT (KẏyKyẏ +Rẏ) β

, (4.15)

where the Tikhonov and Laplacian regularizers for both modalities are contained in Rẋ

and Rẏ

Rẋ = εxKẋẋ +
γx
p2
x

KẋẋLẋKẋẋ (4.16)

Rẏ = εyKẏẏ +
γy
p2
y

KẏẏLẏKẏẏ (4.17)

where the εx and εy are the Tikhonov regularization parameters, and γx

p2x
and γx

p2x
are the

normalized Laplacian regularization parameters, all of which control the degree of penal-
ization (regularization) of the respective L2-norms in each Hilbert space (Hx andHy).

Following identical steps as enumerated with Tikhonov regularized KCCA in Section 3.3.1,
we can write the above regularized expression as a constrained optimization problem,
where both parts of the denominator are set to 1, and we maximize

αTKẋxKyẏβ (4.18)
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subject to:

αTKẋxKxẋα + εxα
TKxα +

γx
p2
x

αTKẋẋLẋKẋẋα = 1 (4.19)

βTKẏyKyẏβ + εyβ
TKyβ +

γy
p2
y

βTKẏẏLẏKẏẏβ = 1, (4.20)

which, for simplicity in writing, can be equivalently expressed as the maximization of

αTKẋxKyẏβ (4.21)

subject to:

αTKẋxKxẋα + αTRẋα = 1 (4.22)

βTKẏyKyẏβ + βTRẏβ = 1, (4.23)

with regularizers

Rẋ = εxKẋẋ +
γx
p2
x

KẋẋLẋKẋẋ (4.24)

Rẏ = εyKẏẏ +
γy
p2
y

KẏẏLẏKẏẏ. (4.25)

This constrained optimization problem has the corresponding Lagrangian function:

L(λα, λβ, α, β) = αTKẋxKyẏβ−λα(αTKẋxKxẋα+αTRẋα−1)−λβ(βTKẏyKyẏβ+βTRẏβ−1).

(4.26)

The minimization of this Lagrangian function is obtained as follows

∂L

∂λα
(λα, λβ, α, β) = 0 (4.27)

⇔ KẋxKyẏβ = 2λα(KẋxKxẋα + αTRẋα) (4.28)
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∂L

∂λβ
(λα, λβ, α, β) = 0 (4.29)

⇔ KẏyKxẋα = 2λβ(KẏyKyẏβ + βTRẏβ), (4.30)

from which (following the same algebraic steps in 3.3) we can derive the following gen-
eralized eigenvalue problem:

(
KẋxKxẋ +Rẋ KẋxKyẏ

KẏyKxẋ KẏyKyẏ +Rẏ

)(
α

β

)
= λ

(
KẋxKxẋ +Rẋ 0

0 KẏyKyẏ +Rẏ

)(
α

β

)
.

(4.31)

As with Tikhonov regularized KCCA outlined in Chapter 3, the solution to the above
eigenvalue problem yields the coefficient vectors α1 and β1, which maximize the corre-
lation between the ΦX and ΦY data projections. Interesting now is that with the addition
of Laplacian regularization, these projections of maximal correlation will also be smooth
along the manifold (Blaschko et al. (2008)). We acquire a numerical solution for the first
weight vectors ũ1

x and ũ1
y by Equations (3.41) and (3.42). These vectors in the Hilbert

spaces are analogous to the u1
x and u1

y in the input spaces resulting from Equation (2.57).
As with the linear dimensionality reduction methods, to obtain the further directions of
maximal correlation, we simply take the next eigenvectors αi and βi corresponding to
the next highest eigenvalues λi, leading to weight vector solutions of ũix and ũiy that are
smooth with respect to the ambient space (Tikhonov regularization) and with respect to
the [graph Laplacian estimated] manifold structure (Laplacian regularization).

4.2.1 Properties of Semi-supervised KCCA

The two-modality case of semi-supervised KCCA can be generalized to incorporate mul-
tiple modalities as shown for standard KCCA in Chapter 2, except where each has addi-
tional data without known correspondence. See Blaschko et al. (2008).



Chapter 5

Methods and Materials

5.1 Functional Magnetic Resonance Imaging (fMRI) Data

fMRI studies entail having a human volunteer lie in an fMRI scanner (see Figure 5.1) and
showing him or her some form of stimulus, and recording their brain activation patterns in
the form of 3D images every few seconds (see Figure 5.2). The goal of these studies is to
localize the main regions of brain activity corresponding to a given stimulus. fMRI data
is well tuned to subspace methods of dimensionality reduction given that data are already
well-aligned due to the nature of the acquisition process. Thus the problem is inherently
one of dimensionality reduction – reduction of the pixels in a high-dimensional brain
image to a reasonably small region of localized pixels, corresponding to a given aspect of
the input stimulus (see Figure 5.3). Particularly when the goal is to localize brain activity
during natural visual processing tasks, such as watching a video, the analysis of this data
is a very challenging task for machine learning.

The studies aiming to localize brain activity, or reduce the activity to the main dimen-
sions of activity (brain regions consisting of 3-dimensional pixels, voxels), face a num-
ber of computational and practical problems. First, fMRI studies yield extremely high-
dimensional data, i.e. 36,000 dimensions per image (at a given time-point), so to notice
any patterns in the data, the dimensions need to be drastically reduced. Second, the safe
amount of time that a human may remain in an fMRI scanner due to the strength of the
magnet is limited, and the demand of such fMRI scanning facilities is high. This leads to
the number of time points recordable at a given time period to be very limited, and with
an n-size much smaller than that of the dimensions of the data, the learning problem is
very susceptible to overfitting. Finally, when using natural visual stimuli, one needs labels
for every few frames of the movie, indicating the content of said frames’ stimulus during
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(a) Functional Magnetic Resonance Imaging (fMRI) Scanner.

Figure 5.1: A human volunteer lies in an fMRI scanner as they are shown some sort of stimu-
lus and his/her brain activity is recorded in terms of the blood oxygen level-dependent (BOLD)
response.

the corresponding fMRI data acquisition. As the natural stimuli are complex, these labels
need to be subjectively generated by several human observers. This process requires at
least five observers to watch each stimulus (i.e. a movie) and score the content of the
frames every few seconds, encoding the degree to which the stimulus aspects of interest
are present in the frame (i.e. faces, bodies). This is a very time consuming and expensive
process, and data without labels is relatively less expensive.

Thus, the current work seeks to address the above problems in the analysis of fMRI data as
well as to improve its inferential performance, by performing dimensionality reduction via
KCCA in a semi-supervised (Laplacian regularized) framework. The approach of KCCA
with fMRI data has only recently been explored before by Hardoon et al. (2007), but never
in a semi-supervised learning framework. We hypothesize that this framework will not
only allow maximum use of all available data, even those without known correspondences
(stimulus labels), and thereby aid the problem of overfitting, but also improve inference
based on use of manifold regularization.
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(a) Sample fMRI brain image.

Figure 5.2: This figure shows how a sample fMRI brain image appears, and how the brain is
recorded in subdivided ”slices” during acquisition. These subdivided slices are recorded through
the entire brain at every given time point, then concatenated to form one brain image vector.

5.1.1 Blood Oxygen Level Dependent (BOLD) Response

fMRI data measures the hemodynamic response (change in blood flow) related to neural
activity in the brain, or the BOLD response. The changes in the BOLD signal has been
implicated in many studies, identifying its coupling with blood flow and metabolic rate,
and indicating its correlation with neural activity (Ulmer and Jansen (2010)). BOLD ef-
fects are measured by acquisition of contrast-weighted volumetric images, wherein each
3-dimensional voxel we obtain represents a 3 millimeter cube of brain tissue BOLD re-
sponse (Ulmer and Jansen (2010)).

5.1.2 Data Acquisition

All of the fMRI data used was acquired at the Max Planck Institute for Biological Cy-
bernetics, using a Siemens 3 Tesla (3T) TIM scanner. All data sets obtained consisted of
350 time-slices of 3-dimensional fMRI brain volumes (voxels), separated by 3.2 seconds,
temporal resolution (TR). From this set of 350 time-slices, the first and last three had to
be removed due to the recording artifacts they introduced.
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(a) Localized regions of brain activity after successful
dimensionality reduction.

Figure 5.3: In this figure we see the localized regions of brain activity during a given stimulus, the
reduced dimensions (pixels/voxels) of activity. This is a visualization of a given ”slice” through
the brain, as illustrated in Figure 5.2.
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5.1.3 Natural Viewing Data

Recently there has been a great surge in interest in assessing natural visual processing.
Specifically, in the brain activity occurring during a natural and complex setting, such as
having the human volunteer watch a video in the scanner in order to gain insight into the
brain processes and connectivity underlying more natural processing. (i.e. see Figure 5.1).
Previously brain activity was analyzed in a more controlled setting, showing unnatural
and limited stimuli, which leads to easier data analysis. As such, analysis of this data has
faced a number of problems, as outlined earlier in this Chapter.

The problem of analyzing natural fMRI viewing data has been approached by neuroscien-
tists from various routes: linear regression was used to identify brain areas that correlate
with particular labels in the movie (Bartels and Zeki (2004b)), the perceived content was
inferred based on brain activity (Hasson et al. (2004)), data-driven methods were used to
subdivide the brain into units with distinct response profiles (Bartels and Zeki (2004a)),
and correlation across subjects was used to infer stimulus-driven brain processes at dif-
ferent timescales (Hasson et al. (2008)).

As such, we have a ground-truth with which we can compare (1) what regions our method
of SSKCCA learns and localizes, and (2) how well it learns, what the empirical perfor-
mance is in terms of how we evaluate the method (see Section 6.1). As described above,
previous neuroscientific studies have implicated the regions we can expect the method to
learn should our hypotheses about the method be fulfilled.

5.1.4 Resting State Activity Data

In order to explore a another semi-supervised setting in which unlabeled data are acquired
as a biproduct of other fMRI studies with the labeled data, resting state data was explored
as a potential additional source of unlabeled data. The inclusion of such data would allow
researchers to maximize the use of all acquired data, without increasing costs of a) data
acquisition and/or b) costly data labels.

Resting state activity has drawn the attention of neuroscientists for more than a decade
(Biswal et al. (1995)). This type of fMRI data is defined as brain activation which occurs
in the absence of any task or stimuli, and is generally measured in awake subjects during
prolonged fMRI scanning sessions, as described above. The instruction given to the vol-
unteers is simply to close their eyes and to do nothing. The basic idea is that spontaneous
fluctuations of neural activity in the brain may reveal some fundamental characteristics of
brain function. These aspects could be functional as well as structural.
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5.2 Stimuli Labels

The continuous label time-series were obtained using two separate methods: via the
frame-by-frame computer analysis of the movie (Bartels et al. (2007)), and through exten-
sive subjective ratings averaged across an independent set of five human observers (Bar-
tels and Zeki (2004a)). The computer-derived labels indicated luminance change over
time (temporal contrast) and visual motion energy (i.e. the fraction of temporal contrast
that can be explained by motion in the movie). The former were inexpensive to obtain
whereas the latter were considerably costly.

The human-derived labels were the time-extensive and tedious ones to obtain. They were
acquired from five human observers, each of whom had to watch the movie five times to
provide a rating every 3.2 seconds for the five respective labels. The five labels consisted
of: (1) the intensity of subjectively experienced color, the degree to which (2) faces, (3)
language, (4) motion, and (5) human bodies were present in the movie. In prior studies,
each of these labels had been shown to correlate with brain activity in particular and
distinct sets of areas specialized to process the particular label in question (Bartels and
Zeki (2004a); Bartels et al. (2007)).

5.3 Pre-processing Methods

The imaging data were pre-processed using standard procedures using the Statistical Para-
metric Mapping (SPM) toolbox before analysis (Friston et al. (2007)). Included was a
slice-time correction to compensate for acquisition delays between slices, a spatial re-
alignment to correct for small head-movements, a spatial normalization to the SPM stan-
dard brain space (near MNI).

The data used in the first set of experiments described in Section 6.3 was spatially smoothed
using a Gaussian filter of 6 mm full width at half maximum (FWHM), whereas for the
goal of comparing across subjects in the experiments described in Section 6.4, spatial
smoothing was performed using a Gaussian filter of 12 mm full width at half maximum
(FWHM). Subsequently, all images were skull-and-eye stripped and the mean of each
time-slice was set to the same value (global scaling). A temporal high-pass filter with a
cut-off of 512 s was applied, as well as a low-pass filter with the temporal properties of
the hemodynamic response function (HFR), in order to reduce temporal acquisition noise.

Additionally, to correct for the delay of the peak of the BOLD response to a stimulus
mentioned earlier, the stimulus time-series (the labels corresponding to one of the video



52 CHAPTER 5. METHODS AND MATERIALS

stimuli) was convolved with a temporal filter modeling the dynamics of a generic hemo-
dynamic response function (HRF), the same as with the fMRI data ( Friston et al. (2007)).

5.4 Paired Data and Notation

We will now formalize the above setting as necessary for the two-modality case of KCCA
and for SSKCCA. The interesting part about the above described setting is that the data
are available in two modalities (fMRI data and stimulus labels), making this a perfect
candidate for KCCA.

The X modality is composed of the fMRI data. The active viewing fMRI data (Sec-
tions 5.1.3) consisted of n = 344 time-slices of brain activation images acquired dur-
ing the viewing of two movies of 18.5 minutes each in length. The data from the first
movie, where the correspondences with the Y modality are known, is denoted with X =

(x1, . . . , xn) ∈ Rn×36,268. The data acquired during the second movie, the additional
data source of unlabeled active viewing fMRI data, is denoted X̃ = (xn+1, . . . , xp) ∈
Rn−p×36,268. The additional source of ”unlabeled” data, the resting state data (Section 5.1.4)
is denoted X̂ = (xn+1, . . . , xp) ∈ Rp−n×36,268.

The Y modality consisted of the corresponding labels (Section 5.2) of the first movie’s
content (corresponding to activity in X). These stimulus labels were obtained from the
scores of five human observers for one movie, Y {y1, . . . , yn} ∈ [0, 1], where n = 344.
Labels were not obtained for the second movie given the goals of this exploration.

An illustration of this setting is provided in Figure 5.4.
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(a) Illustration of the setting of the various types of data.

Figure 5.4: Examples of some stimuli frames shown during fMRI acquisition are shown on the
top of the figure, where below that are the corresponding scores for one of the labels, faces, to
those frames if known. Below that are the brain activation patterns corresponding to the viewing
of the above frames. The two sets of images (stimuli and fMRI data) on the left are examples
of paired data, where D = {(x1, y1 = .9), (x2, y2 = 0)}. This is the expensive labeled data.
The three remaining images on the right are illustrations of (1) unlabeled fMRI data, where the
correspondence of the face label content of the frame is unknown, and (2) resting state fMRI data,
where activity is recorded in the absence of a stimulus.



Chapter 6

Experiments

The work presented in this chapter has yielded a few publications, namely that presented
partially in Shelton et al. (2009a,b); Blaschko et al. (submitted, 2009).

All experiments consisted of the most general model of SSKCCA in Expression (4.15)
with appropriate model-selected model parameters to test different performance aspects
of the algorithm with our data sets. As we have additional data for only one of the two
modalities, specifically we have p samples in Ẋ for the X modality, but only n (n <

p) in Y for the Y modality, where the second modality only consists of stimuli labels
corresponding to X . With these two datasets, SSKCCA in Expression (4.15) is reduced
to

max
α,β

αTKẋxKyyβ√
αT (KẋxKxẋ +Rẋ)αβT

(
K2
y

)
β
, (6.1)

with regularizers

Rx̂ = εxKẋẋ +
γx
m2
x

KẋẋLẋKẋẋ. (6.2)

Note that no regularizers on Y are needed due to the nature of the Y modality. Smoothness
in the ambient space and with respect to a manifold does not make sense when the data
consist only of continuous labels.
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6.1 Evaluation Methodology

In order to evaluate the performance of KCCA on the fMRI data described in Section 5.4,
and the effect of semi-supervised Laplacian regularization on the performance of KCCA,
I have evaluated three variants of the algorithm:

• In the first variant, we have run Tikhonov regularized KCCA without any Laplacian
regularization, by setting γx = 0 in Expression (6.1), and using only the paired
datasets X and Y .

• The second variant consists of Laplacian regularization where the empirical Lapla-
cian matrix (graph Laplacian L) was computed using only data for which corre-
spondences between the X and Y modalities were known, using only the X set.

• In the final variant, we used full semi-supervised Laplacian regularization, where
the graph Laplacian estimate of the manifold was calculated using all available
training data, Ẋ .

These methods will be briefly revisted and outlined in the description of the two experi-
mental sets.

We evaluate the performance of the algorithms quantitatively based on the magnitude of
the correlation of the learned projections of ũ1

x and ũ1
y, across all of the experimental

manipulations (different model parameter settings and data sets) and across all stimuli
labels. To evaluate the performance of these experiments on unseen data and obtain testing
performance values, we have run five-fold cross validation. This entails dividing the data
into five set of equal n’s and holding one of them out, the ”hold-out” set. Then we train
the model our on four sets, and test on the remaining hold-out set, obtaining one hold-
out correlation between the learned projections of ũ1

x and ũ1
y. This is repeated on all

permutations of the data divisions until we have obtained five hold-out correlations of the
data projections.

In all cases, we have used linear kernels on both the input and output spaces, X and Y .
This is such that we can interpret the output ũ1

x of the learned projection function, fx
(refer to Chapter 4 for details), by reconstructing the vector as a learned map of the brain
regions implicated in the various visual processing tasks.

The graph Laplacian’s Laplacian matrix was computed using a Gaussian neighborhood
kernel (Wij = wij := exp

(
−‖xi−xj‖2

σ2

)
) with the bandwidth parameter σ set to the

median distance between all pairs of training data with and without correspondences
(σ = mediani,j‖xi − xj‖). We have used the symmetric normalized Laplacian L =

D−
1
2 (D −W )D

1
2 , where D is the diagonal matrix whose entries are the row sums of the



56 CHAPTER 6. EXPERIMENTS

similarity matrix, W (see Section 4.1.1).

6.2 Model Selection

Regularization parameters need to be carefully selected in order to tune the model to the
data at hand, and to trade-off between testing error and training error. This is particularly
important in the case of Laplacian regularization as explained in Chapter 4. We have
used two model selection criteria to optimize over the regularization parameters of εx and
γx, for Tikhonov and Laplacian regularization, respectively. Both criteria are used as the
inner loop of a grid search.

The first method of model selection used was cross validation. We selected the model
parameters that maximize a five-fold cross validation estimate of the empirical correlation
(using only the training data).

Although cross validation is a thorough method of model selection, it is both computation-
ally and statistically inefficient. Thus we have also evaluated a model selection criterion
proposed by Hardoon et al. (2004) which is intended to replicate the results of cross vali-
dation with a computationally more efficient approach. This method consists of creating
a random permutation of the data correspondences and running the SSKCCA generalized
eigen value problem with both the data sets, unpermuted data and with the permuted data.
The parameter setting taken to be the optimum with is that with the maximum norm of the
difference of the spectra of the two SSKCCA eigenvalue problems (that computed with
the permuted data compared with that computed with the unpermuted data).

6.3 Active Viewing Experiments

The first set of experiments had a number of goals. First they aimed to ascertain whether
KCCA is indeed a suitable algorithm for dimensionality reduction of fMRI data. Further-
more, the main goal was to determine (a) whether the manifold assumption holds with
this particular type of high-dimensional data, and (b) if Laplacian regularization improves
performance of KCCA in terms of hold-out correlations and/or in terms of neuroscientific
interpretation of the learned projection coefficients. Our hypotheses predict that the mani-
fold assumption will hold with fMRI data, and that Laplacian regularization will improve
inference performance of KCCA.

As such, these experiments used only the two sets of active viewing data from one human
volunteer and stimuli labels described in 5.4. The KCCA experiment variants consisted
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of:

(1) KCCA with Tikhonov regularization→ labeled data only (supervised),

(2) KCCA with Tikhonov and Laplacian regularization → labeled data only (super-
vised),

(3) SSKCCA with Tikhonov and Laplacian regularization → labeled and unlabeled
data (semi-supervised).

6.3.1 Results

The quantitative and qualitative results are presented in the first two sections below, and
these results are summarized and discussed in the section to follow.

Quantitative Results

The visual content of the stimulus is quantified in six variables: Motion, Temporal Con-
trast, Human Body, Color, Faces, and Language. We have repeatedly run all three variants
of the experimental setup (Section 6.1) setting our output space to each individual vari-
able. The results for the cross validation model selection are shown in Table 6.1, and
the results for the spectral model selection are shown in Table 6.2. We have additionally
run experiments with multi-variate output by grouping several of the variables into three
groups: {Visual motion energy, Body, Color}; {Motion, Faces}; and {Motion, Visual
motion energy, Color, Faces}. The results of these experiments using the spectral model
selection are shown in Table 6.3.

Table 6.1: Mean holdout correlations across the six variables in all experiments with five-fold
cross-validation. Experiment 1: KCCA using only data for which correspondences are known,
X , and Tikhonov regularization. Experiment 2: Laplacian regularization where the graph Lapla-
cian L is estimated using only data for which correspondences are known, X . Experiment 3:
full semi-supervised Laplacian regularization, L calculated using Ẋ . Semi-supervised Laplacian
regluarized KCCA yields the best performance in all cases.

Motion Temporal Contrast Human Body Color Faces Language
Exp 1 -0.012 ± 0.081 0.042 ± 0.065 0.095 ± 0.086 -0.075 ± 0.069 0.173 ± 0.073 0.172 ± 0.070
Exp 2 0.065 ± 0.066 0.088 ± 0.084 0.274 ± 0.093 -0.002 ± 0.079 0.203 ± 0.075 0.231 ± 0.074
Exp 3 0.170 ± 0.074 0.116 ± 0.101 0.340 ± 0.043 0.128 ± 0.089 0.303 ± 0.054 0.365 ± 0.057

The results of Table 6.2, the mean hold-out correlations for each experiment and each of
the man-made labels (Section 5.2) are presented in Figure 6.1.
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(a) Mean hold-out correlations across all three experiments for all man-made stimulus labels.

Figure 6.1: Experiment 1: KCCA using only data for which correspondences are known, X ,
and Tikhonov regularization. Experiment 2: Laplacian regularization where the graph Lapla-
cian L is estimated using only data for which correspondences are known, X . Experiment 3:
full semi-supervised Laplacian regularization, L calculated using Ẋ . Semi-supervised Laplacian
regluarized KCCA yields the best performance in all cases.
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Table 6.2: Mean holdout correlations across the six variables in all experiments with the spectral
model selection criterion of Hardoon et al. (2004). Experiment 1: KCCA using only data for which
correspondences are known, X , and Tikhonov regularization. Experiment 2: Laplacian regular-
ization where the graph Laplacian L is estimated using only data for which correspondences are
known, X . Experiment 3: full semi-supervised Laplacian regularization, L calculated using Ẋ .
Semi-supervised Laplacian regluarized KCCA yields the best performance in all cases.

Motion Temporal Contrast Human Body Color Faces Language
Exp 1 -0.012 ± 0.081 0.042 ± 0.065 0.095 ± 0.086 -0.075 ± 0.069 0.173 ± 0.073 0.172 ± 0.070
Exp 2 0.065 ± 0.066 0.088 ± 0.084 0.274 ± 0.093 -0.002 ± 0.079 0.203 ± 0.075 0.231 ± 0.074
Exp 3 0.170 ± 0.074 0.116 ± 0.101 0.340 ± 0.043 0.128 ± 0.089 0.303 ± 0.054 0.365 ± 0.057

Table 6.3: Mean holdout correlations across the 3 multi-variate sets in all experiments with the
spectral model selection criterion of Hardoon et al. (2004). Experiment 1: KCCA using only data
for which correspondences are known, X , and Tikhonov regularization. Experiment 2: Laplacian
regularization where the graph Laplacian L is estimated using only data for which correspon-
dences are known, X . Experiment 3: full semi-supervised Laplacian regularization, L calculated
using Ẋ . Semi-supervised Laplacian regluarized KCCA yields the best performance in all cases.

Visual motion energy, Body, Color Motion, Faces Motion, Vis. mot. energy, Color, Faces
Experiment 1 0.1596 ± 0.0807 -0.0827 ± 0.0460 0.1167 ± 0.0785
Experiment 2 0.1873 ± 0.0879 0.0602 ± 0.0908 0.1498 ± 0.0827
Experiment 3 0.2844 ± 0.0716 0.1898 ± 0.0636 0.2528 ± 0.0579

Qualitative Results

As we have used linear kernels in all cases, we can interpret the outputs of the various
KCCA experiments by visualizing the learned weights in the ũ1

x. These are the coeffi-
cients assigned to different spatially localized brain regions in a given KCCA experiment.
We show results for visual stimulus consisting of Faces in Figure 6.2, Human body in Fig-
ure 6.11, Color in Figure 6.4, and Motion in Figure 6.10. In Figure 6.6 we show results
from multivariate output consisting of Motion and Faces.

Evaluation

Our hypotheses that this fMRI data set is a good candidate for KCCA and furthermore for
Laplacian regularized semi-supervised KCCA were confirmed. The quantitative results
displayed in the Tables and in Figure 6.1 depict prominent trends. In each variate condi-
tion, Laplacian regularization improved hold-out correlations above the fully-supervised
variant, and the semi-supervised variants of KCCA yielded the highest hold-out corre-
lations. These results suggest that Laplacian regularized KCCA can generalize better to
new data than Tikhonov regularized KCCA, and that the manifold assumption holds with
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(a) Semi-supervised Laplacian regularized solution.

(b) Laplacian regularized solution.

(c) KCCA without Laplacian regularization.

Figure 6.2: Faces: activation in the cortical region responsive to the visual perception of faces, the
fusiform face area (FFA). Weight vectors are plotted over an anatomical image of the volunteers
brain. Note that the semi-supervised Laplacian regularization led to the most specific and most
significant weights in FFA.
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(a) Semi-supervised Laplacian regularized solution.

(b) Laplacian regularized solution.

(c) KCCA without Laplacian regularization.

Figure 6.3: Human Body: activation in the cortical region responsive to the visual perception
of human bodies, in the extrastriate body area (EBA) and in the fusiform body area (FBA). Same
observation as in Figure 6.2.



62 CHAPTER 6. EXPERIMENTS

(a) Semi-supervised Laplacian regularized solution.

(b) Laplacian regularized solution.

(c) KCCA without Laplacian regularization.

Figure 6.4: Color: activation in the color responsive cortex (human visual area 4, hV4). Same
observation as in Figure 6.2.
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(a) Semi-supervised Laplacian regularized solution.

(b) Laplacian regularized solution.

(c) KCCA without Laplacian regularization.

Figure 6.5: Motion: activation in the visual motion complex, area V5+/MT+. Same observation
as in Figure 6.2.
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(a) Semi-supervised Laplacian regularized solution.

(b) Laplacian regularized solution.

(c) KCCA without Laplacian regularization.

Figure 6.6: Multivariate - Motion and Faces: activations in the visual motion complex, area
V5+/MT+ (left), and activation in the cortical region responsive to the visual perception of faces,
the fusiform face area (FFA) (right). Same observation as in Figure 6.2.
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fMRI data. In the semi-supervised conditions (Experiment 3 as shown in Tables 6.1, 6.2
and 6.3) the additional data without correspondences is sufficiently close to the marginal
distribution over X to improve results significantly, thus the additional data improves the
results without any information about the correspondences of the data.

Additionally with the neuroscientific interpretation of the weights learned by the regres-
sion – in order to infer brain regions that are important during different types of visual pro-
cessing – confirms previous studies (Bartels and Zeki (2004b); Bartels and Zeki (2004a);
Bartels et al. (2007)). Figures 6.2 through 6.6 show slices taken through the anatomi-
cal image of one subject, with weight maps obtained from the different analyses of its
functional data superimposed in red, wherein the maps were thresholded at 2 standard de-
viations in most cases, but had to be lowered in some cases to reveal any localized activity.
We show examples of four of the single-variate labels for each of the three experiments,
as well as one of the sets of multi-variate experiments. In the multi-variate label example,
we show the same weight map but at different brain volume coordinates in order to visual-
ize the expected brain activations for each of the lables involved. The maps corresponding
well to the known functional anatomy, and to activations obtained in the previous regres-
sion studies of free-movie-viewing data Bartels and Zeki (2004a). Faces obtained high
weights in the fusiform cortex (fusiform face area, FFA) (Figure 6.2); Human Bodies
dorso-lateral and ventral parts within the lateral occipital cortex (extrastriate body area
(EBA) and fusiform body area (FBA)) (Figure 6.11); Color obtained high weights in the
medial fusiform cortex where human V4 is located (Figure 6.4). The spatial layout of
the weights thus corresponds well to the previous literature, and indicates that some of
the analyses applied here yield results that are neuroscientifically meaningful and that can
identify distinct cortical regions involved in the distinct tasks. Semi-supervised Laplacian
regularization worked well in that weight maps thresholded at >2SD show relatively well
defined activity of the regions previously shown to be involved with the features. For other
analyses, e.g. KCCA without Laplacian regularization, we had to reduce the threshold to
0.5 or 1 (faces and color in the single-variate cases, respectively) to obtain activity in the
areas in question, and the maps show additional, unspecific activity as well.

6.4 Resting State Experiments

In the second set of experiments, the goal was to the assess how resting state data (Sec-
tion 5.1.4) performs as a source of additional unlabeled data. Resting state data is even
cheaper to obtain than active viewing data, in the sense that it has to be acquired in be-
tween active viewing recording sessions. Given this, its inclusion in the estimate of the
manifold could even further boost inferential performance at a lesser cost.
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This class of experiments is composed of the same experiments outlined for the natu-
ral/active viewing experiments in Section 6.3, but these are aimed at comparing resting
state activity to active viewing data. As such, all forms of available data (described in
Section 5.4) are utilized in these experiments, and have furthermore been acquired from
five human volunteers. The hypotheses are that resting state activity is similar to natural
visual processing data, and will thus perform just as well as a source of additional data in
the semi-supervised learning framework.

The set of experiments consisted of:

(A) KCCA with Tikhonov regularization→ labeled data only (supervised),

(B) KCCA with Tikhonov and Laplacian regularization → labeled data only (super-
vised),

- SSKCCA with Tikhonov and Laplacian regularization → labeled and additional
data (semi-supervised):

(C) resting state,

(D) unlabeled active viewing data,

(E) unlabeled active viewing data and resting state.

6.4.1 Results

The quantitative and qualitative results are presented in the first two sections below, and
these results are summarized and discussed in the section to follow.

Quantitative Results

As in the first set of experiments (Section 6.3), we empirically evaluate the performance
of the above KCCA variants via five-fold cross validation, and we model select both εx
and λx regularization parameters with the criterion from Hardoon et al. (2004).

The results of these tables are depicted in Figure 6.7, Figure 6.8, and Figure 6.9.

Qualitative Results

Again, as we used linear kernels as well in this set of experiments, we can visualize
the learned projection vectors, the coefficients ũ1

x from fx, as a map of the significant
weights onto slices shown through single subjects. Figure 6.10 shows the weights for
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(a) Mean hold-out correlations for all experiments and all subjects in the label condition Motion.

Figure 6.7: Experiment A: KCCA using only data for which correspondences are known, X , and
Tikhonov regularization. Experiment B: Laplacian regularization where the graph Laplacian L
is estimated using only data for which correspondences are known, X . Experiments C, D, E:
full semi-supervised Laplacian regularization, L calculated using the augmented data matrix Ẋ
computed from additional (C) resting state data, (D) unlabeled active viewing data, and (E) resting
state and active viewing data. Semi-supervised Laplacian regularized KCCA in the C, D, and E
experiments outperforms the two cases without semi-supervision (A, and B), and the performance
of resting state data as an additional data source (C) performs comparatively well as the active
viewing data conditions, (D) and (E).
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(a) Mean hold-out correlations for all experiments and all subjects in the label condition Human Bodies.

Figure 6.8: Experiment A: KCCA using only data for which correspondences are known, X , and
Tikhonov regularization. Experiment B: Laplacian regularization where the graph Laplacian L
is estimated using only data for which correspondences are known, X . Experiments C, D, E:
full semi-supervised Laplacian regularization, L calculated using the augmented data matrix Ẋ
computed from additional (C) resting state data, (D) unlabeled active viewing data, and (E) resting
state and active viewing data. Semi-supervised Laplacian regularized KCCA in the C, D, and E
experiments outperforms the two cases without semi-supervision (A, and B), and the performance
of resting state data as an additional data source (C) performs comparatively well as the active
viewing data conditions, (D) and (E).
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(a) Mean hold-out correlations for all experiments and all subjects in the label condition Language.

Figure 6.9: Experiment A: KCCA using only data for which correspondences are known, X , and
Tikhonov regularization. Experiment B: Laplacian regularization where the graph Laplacian L
is estimated using only data for which correspondences are known, X . Experiments C, D, E:
full semi-supervised Laplacian regularization, L calculated using the augmented data matrix Ẋ
computed from additional (C) resting state data, (D) unlabeled active viewing data, and (E) resting
state and active viewing data. Semi-supervised Laplacian regularized KCCA in the C, D, and E
experiments outperforms the two cases without semi-supervision (A, and B), and the performance
of resting state data as an additional data source (C) performs comparatively well as the active
viewing data conditions, (D) and (E).
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Table 6.4: Mean holdout correlations for motion in the five subjects across all experiments. For
a description of the experiments, see Section 6.4. In all cases, semi-supervision from resting state
activity (Exp C) improves over regression using only fully labeled data (Exp A).

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5
Exp A −0.008± 0.12 −0.08± 0.07 −0.08± 0.04 −0.06± 0.07 −0.08± 0.08
Exp B −0.02± 0.17 −0.03± 0.10 0.01± 0.09 −0.02± 0.04 −0.03± 0.08
Exp C 0.12± 0.06 0.10± 0.10 0.17± 0.14 0.012± 0.09 0.06± 0.12
Exp D 0.09± 0.09 0.10± 0.14 0.15± 0.15 0.04± 0.04 0.02± 0.11
Exp E 0.11± 0.10 0.11± 0.15 0.12± 0.09 0.11± 0.08 0.16± 0.15

Table 6.5: Mean holdout correlations for human body in the five subjects across all experiments.
For a description of the experiments, see Section 6.4. In all cases, semi-supervision from resting
state activity (Exp C) improves over regression using only fully labeled data (Exp A).

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5
Exp A 0.13± 0.17 −0.003± 0.12 0.09± 0.11 0.06± 0.14 0.12± 0.17
Exp B 0.16± 0.16 0.16± 0.22 0.28± 0.15 0.16± 0.20 0.21± 0.16
Exp C 0.36± 0.17 0.29± 0.16 0.42± 0.15 0.30± 0.12 0.40± 0.06
Exp D 0.34± 0.09 0.30± 0.14 0.38± 0.25 0.25± 0.11 0.35± 0.11
Exp E 0.35± 0.22 0.37± 0.17 0.45± 0.08 0.33± 0.14 0.43± 0.05

the motion variable, Figure 6.11 for the human body variable, and Figure 6.12 for the
language variable.

Evaluation

The main trends to note from the quantitative results in Section 6.4.1 are that, in terms
of additional data, resting state data performs as well as unlabeled active viewing data
in a semi-supervised learning framework. Given that regularization with respect to their
respective manifold estimates L yielded comparable results, this confirms our hypothesis

Table 6.6: Mean holdout correlations for language in the five subjects across all experiments. For
a description of the experiments, see Section 6.4. In all cases, semi-supervision from resting state
activity (Exp C) improves over regression using only fully labeled data (Exp A).

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5
Exp A 0.10± 0.13 0.10± 0.10 0.11± 0.14 −0.03± 0.17 −0.03± 0.11
Exp B 0.15± 0.17 −0.05± 0.09 0.06± 0.23 0.14± 0.18 0.03± 0.14
Exp C 0.35± 0.10 0.15± 0.11 0.42± 0.03 0.07± 0.17 0.10± 0.13
Exp D 0.27± 0.17 0.29± 0.14 0.34± 0.20 0.08± 0.11 −0.03± 0.11
Exp E 0.34± 0.17 0.22± 0.15 0.30± 0.18 0.24± 0.15 0.07± 0.19
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that resting state data is similar in distributive structure to natural active viewing data. We
note this comparison from the similarity in general improvement of Experiment C over
Experiments A and B, across all subjects in each label condition, and that the improve-
ment of (C) over (A) and (B) is comparable to the improvement in (D).

The feature-weight maps shown in Figures 6.10-6.12 were all in accord with established
findings in neuroscience, in that distinct features such as visual motion, the perception of
human bodies or of language correlated with activation of distinct brain regions, such as
V5+/MT+, the lateral occipital complex (LOC) and the extrastriate body area (EBA), as
well as regions of the STS and Wernickes area, respectively. These findings have now
been established in studies using controlled stimuli, as well as those showing movie-clips
to volunteers (Bartels and Zeki (2004b); Bartels et al. (2007); Hasson et al. (2004)).

Our results show that adding resting state data can indeed augment findings obtained
in stimulus-inducing settings. This method may therefore be useful for the increasing
number of imaging centers acquiring resting state data for completely different purposes,
which may then be used to augment functional data, entirely free of cost in terms of
scan time. An even more promising prospect however is that also the baseline or rest
condition within stimulus-driven sessions may be used to augment the results obtained
in the stimulus conditions. This may be especially valuable, since almost all imaging
sessions contain baseline conditions, that are often not used for further analysis, but take
up considerable amount of scan time.

Apart from the above, application-orientated considerations, our findings also provide
new evidence that brain-states during rest which are difficult to characterize indeed re-
semble those during exposure to complex, natural stimulation. Our approach is therefore
an extension of prior attempts to characterize the complex, rich, yet difficult to character-
ize brain activation during the absence of externally driven stimulation.
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(a) KCCA without Laplacian regularization.

(b) Laplacian regularized solution.

(c) Semi-supervised Laplacian regularized solution using rest-
ing state data.

Figure 6.10: Illustration of weight maps obtained for the visual motion feature in experiments
A, B, and D. Transverse slices are shown through a single subjects T1-weighted structural image
with superimposed weight-maps, colored in red for positive weights (left column), and colored in
blue for negative weights (right column). The positive weight maps (left column) reveal the motion
processing area V5/MT+, as well as posterior in the midline a part of peripheral early visual area
V1 (not labeled). The negative weight maps reveal a reduction of BOLD signal in the occipital
poles (the foveal representation of early visual areas V1-V3). Both results are in agreement with
the findings reported in a prior study (Bartels et al. (2007)).
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(a) KCCA without Laplacian regularization.

(b) Laplacian regularized solution.

(c) Semi-supervised Laplacian regularized solution using resting state
data.

Figure 6.11: Illustration of weight maps for the human body feature. Weight maps (in red) are
show on transverse (left) and sagittal (right) brain sections of a single subject. Activity involves
the object-responsive lateral occipital cortex (LOC) extending dorsally into region responsive to
human bodies, dubbed extrastriate body area (EBA). The weights in all experiments are very
strong for this feature (see colorbar), and nearly no difference in the extent of activation is visible
across experiments.
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(a) KCCA without Laplacian regularization.

(b) Laplacian regularized solution.

(c) Semi-supervised Laplacian regularized solution using resting state data.

Figure 6.12: Illustration of weight maps obtained for the language feature across the different
experiments. Weight maps (in red) are superimposed on sagittal, coronal and transverse sections
of a single subjects brain. The activation associated to this feature involved the superior tempo-
ral sulcus (STS), extending anteriorly to include parts of Wernickes speech processing area, and
posterior and ventrally (increasing with experiments A, B and D) object-responsive region LOC,
involved in analyzing facial features (in accord with the findings from Bartels and Zeki (2004b)).



Chapter 7

Discussion

Digitalized signals of natural data is intrinsically of high dimensionality, as such, dimen-
sionality reduction methods are crucial to the analysis of modern real-world data. In
this thesis we have reviewed the core methods of dimensionality reduction (Chapter 2),
with which one can learn a lower-dimensional linear representation of structure in high-
dimensional data. We also saw how these linear algorithms can be generalized to account
for more complex, nonlinear patterns via kernelization (Chapter 3). Finally, we learned
how these methods can be extended in a semi-supervised framework for maximal usage of
available data and greater generalizability of results (Chapter 4). The work in the thesis
integrated these ideas and methods in the kernelized and semi-supervised dimensional-
ity reduction technique of Canonical Correlation Analysis (CCA), called SSKCCA, and
explored several variants of this algorithm with modern neuroscientific data, specifically
with various forms of human fMRI data (Chapters 5 and 6), natural active viewing data
and resting state data.

7.1 Conclusions

The two sets of experiments explored a novel approach to the analysis of human fMRI
data acquired during a complex and natural viewing conditions (i.e. watching a movie),
in order to infer the main regions of brain activity during a task. This approach was that
of the recent dimensionality reduction technique called semi-supervised Laplacian regu-
larized KCCA. The goal of these experiments was to make maximal use of all available
fMRI data in the semi-supervised learning framework – even if there were (a) no known
correspondences between stimulus and induced activity data and/or (b) no possible cor-
respondences given a lack of stimulus – in order to reduce the need of the highly costly
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labeled data and reduce overfitting due to small sample sizes. This was approached, as
mentioned via Laplacian regularization, which forms a non-parametric estimate of the
underlying manifold structure of the data, or in other words geometrically estimates the
structure of the marginal distribution, for which correspondences between stimulus and
data are unneeded. Regularizing KCCA with respect to this structure yields projection
directions in the brain data modality and stimulus modality where correlation is maxi-
mum and smooth along the manifold. KCCA was explored with two fully supervised
variants (first with just Tikhonov regularization, then with Laplacian regularization us-
ing an estimate of the manifold structure using only the labeled data), and with several
semi-supervised variants, which explored how different forms of additional (unlabeled)
could be used to estimate the manifold and how they performed in Laplacian regularized
KCCA.

The main messages of the experimental results presented in Sections 6.3.1 and 6.4.1 are
as follows:

• The manifold assumption holds with the high-dimensional data acquired from fMRI
studies.

• Laplacian regularized semi-supervised KCCA allows for successful use of all avail-
able fMRI data: by augmenting the manifold estimate with the less expensive forms
of data which could not have been used in the supervised framework – the unlabeled
active viewing data and/or resting state data – we could reduce the need for the ex-
pensive labeled data.

• Laplacian regularized SSKCCA learned the expected regions, or ground-truth, of
brain activity corresponding to input stimuli as shown in previous neuroscientific
studies. This shows that our method is learning what it should, and can indeed
contribute to the neuroscientists’ analysis of fMRI data.

• Laplacian regularized SSKCCA consistently generalized better to unseen data: reg-
ularizing the KCCA solution with respect to the augmented (unlabeled data or rest-
ing state data included) estimate yielded greater empirical hold-out correlations in
every stimulus label condition and across all subjects.

• Finally, Laplacian regularization allows us to indeed reduce the cost of expensive
labels for fMRI data, while improving performance of dimensionality reduction.
Resting state data is a promising and inexpensive source of unlabeled data that can
be used for this augmentation in the estimate of the manifold which results in this
boost in empirical performance.



Appendix A

Appendix

A.1 Mathematical Foundations

A.1.1 Notation

Vectors, Matrices, and Mathematical Operations

Rd d-dimensional Euclidean space (A.1)

X capital letters denote matrices (A.2)

xij the entry in the i’th row, j’th column of X (A.3)

x lower-case letters denote (column) vectors (A.4)

xi the i’th column vector of the respective matrix (A.5)

I identity matrix: square matrix, 1 along the diagonal, 0 else (A.6)

xT transpose of vector x (A.7)

‖x‖ Euclidean norm of vector x (A.8)

X−1 the inverse of matrix X (A.9)

λ eigenvalue (A.10)

xTu projection of vector x onto vector u, when ‖u‖ = 1 (A.11)

max
x

f(x) the value of x that leads to the maximum value of f(x) (A.12)
n∑
n=1

ai the sum from i = 1 to n, that is, a1 + a2 + · · ·+ an (A.13)
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A.1.2 Linear Algebra

A d-dimensional column vector x and its transpose xT can be written as

Vectors x =


x1

x2

...
xd

 and xT = (x1, x2, . . . , xd) (A.14)

An d× n rectangular matrix X and its transpose XT are denoted as

Matrices X =


x11 x12 . . . x1n

x21 x22 . . . x2n

...
... . . . ...

xd1 xd2 . . . xdn

 (A.15)

and

XT =


x11 x21 . . . xd1

x12 x22 . . . xd2

...
... . . . ...

x1n x2n . . . xdn

 (A.16)

The inner product of two vectors of the same dimensionality yields a scalar (and is sym-
metric)

Inner Product xTw =
d∑
i=1

xiwi = wTx. (A.17)

The Euclidean norm (or length) of this vector is

Euclidean Norm ‖x‖ =
√
xTx, (A.18)

which we call ’normalized’ when ‖x‖ = 1. The inner product is a measure of collinear-
ity of two vectors (given that the angle θ between two d-dimensional vectors is cosθ =
xTw
‖x‖‖w‖ ), and thus a natural similarity measure between the vectors. Specifically, if xTw =

0, then the two are orthogonal, whereas if ‖xTw‖ = ‖x‖‖w‖, they are collinear (for nor-
malized vectors, collinear vectors would be ‖xTw‖ = ‖x‖‖w‖ = 1), or ”very similar”.

A set of vectors is linearly independent if no vector can be written as a linear combination
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of any of the other vectors. A set of d-dimensional linearly independent vectors

Linear Independence X = {x1, . . . , xn} ∈ Rd (A.19)

are said to span a d-dimensional vector space (i.e. Rd), i.e. any vector in X can be written
as a linear combination of the others spanning this space.

The outter product (or matrix product) of two vectors yields a matrix

Outter Product M = xTw =


x1

x2

...
xd

 (w1, w2, . . . , wn) =


x1w1 x1w2 . . . x1wn
x2w1 x2w2 . . . x2wn

...
... . . . ...

xdw1 xdw2 . . . xdwn


(A.20)

Let f(x) be a function of d variables in the vector xT = (x1, . . . , xd). The derivative or
gradient of f(·) with respect to x is computed component by component

Gradient of a function ∇f(x) = grad f(x) =
∂f(x)

∂x
=



∂f(x)
∂x1

∂f(x)
∂x2...
∂f(x)
∂xd

 (A.21)

A.1.3 Probability Theory

The mean (first statistical moment) of the vector x = (x1, . . . , xn) is

Mean mean(x) =
1

n

n∑
i=1

xi. (A.22)

The variance (second statistical moment) of x is

Variance var(x) = σ2 =
1

n

n∑
i=1

(xi − mean(x))2. (A.23)

The covariance (a ”cross-moment”) of x and y = (y1, . . . , yn) is

Covariance covar(x) = σxy =
1

n

n∑
i=1

(xi − mean(x))(yi − mean(x)), (A.24)
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from which it follows that the covariance matrix Cxx is defined as the square matrix
whose ijth element σij is the covariance of xi and xj , and cross-covariance matrix Cxy
contains in element σij the covariance of xi and yj .

The correlation coefficient of x and y, defined as

Correlation Coefficient corr(x) = ρxy =
σxy
σxσy

, (A.25)

is the normalized covariance of the two vectors. This will always yield a value ρ between
−1 and +1, indicating the degree of negative or positive correlation, respectively, between
the two vectors.

A.1.4 Lagrangian Optimization (KKT)

In this text, Karush-Kuhn-Tucker conditions are used to transform our optimization prob-
lems into generalized eigenvalue problems. Let x0 be the position of the extremum value
of a scalar-valued function f(x) that we seek to find. f(x) is subject to some constraint,
and if we can express this in the form g(x) = 0, then we can find the extreme value, or
optimum, of f(x) by first finding the extremum x0 with the following steps. First we form
the Lagrangian function

Lagrangian Function L(x, λ) = f(x) + λg(x) (A.26)

where λ is a scalar referred to as the Lagrangian multiplier that allows us to include the
constraints on f(x) in an ’unconstrained’ way. We convert this constrained optimiza-
tion problem into an unconstrained problem by finding the minimum value, taking the
derivative of L with respect to x

∂L(x, λ)

∂x
=
∂f(x)

∂x
+ λ

∂g(x)

∂x
= 0, (A.27)

through which we solve for λ. In general KKT conditions are necessary but not suffi-
cient. However, for the Rayleigh quotient problems addressed in this thesis, the maximum
eigenvalue also corresponds to the global maximum of the optimization problem. In other
words, the solution provides the x position of the extremum (x0), and via substitution of
this value we find the optimum (extreme value) of f(·) under the given constraint(s).
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